Section 7.7 – Applications of Trigonometry

This booklet belongs to: Block:

- The LAW of SINES and LAW of COSINES are very useful when solving 'real' world problems
- Remember that using the LAW of COSINES for **SSS triangles**, solve for the **largest angle** first
- Remember that using the LAW of COSINES for SAS triangles, solve for the smallest angle first

Example 1: To measure the length of a lake, a baseline AB is set and measured at 130m. Angles A and B are measured to be 42° and 125° respectively. How long is the lake?

Solution 1:

Example 2: A ship is heading due east and passes a rock A. At the time, the bearing to the lighthouse L is $N60^{\circ}E$. After travelling 5km, the bearing is $N40^{\circ}E$. How far is the ship from the lighthouse?

Solution 2:

Example 3: The length of the sides of a triangular parcel of land are approximately 300*m*, 400*m*, and 600*m*. Approximate the area of the parcel of land

Solution 3:

Example 4: To approximate the length of a lake, a surveyor triangulates the distance to one side to be 950m and to the other 800m. If the angle between the two measures 100° , how long is the lake?

Solution 4:

Section 7.7 – Practice Questions

1. A hot air balloon is flying directly between two cities that are 4km apart. The balloonist finds that the angle of depression to one city is 38° and 33° to the other city. How high above the ground is the balloon?

2. Two planes leave airport A at the same time in different directions. One plane lands at airport B, 630km from airport A. The other plane lands at airport C some time later. If the $\angle ABC = 110^{\circ}$ and $\angle ACB = 40^{\circ}$, how far did the second plane fly.

Pre-Calculus Math 11

3. Two planes leave Victoria at 9 *am*. One plane travels due east at 500 km/h, while the other plane travels $640 km/h N30^{\circ}W$. How far apart are the two planes at noon?

4. In our solar system, the distance from the Sun (*S*) to planets *A* and *B* are 85 and 61 million miles respectively. When $\angle A = 20^{\circ}$, how far is it from planet *A* to planet *B* and *B*'?

Answer Key – 7.7

1.	1.42 <i>km</i>
2.	921 <i>km</i>
3.	2969.2km
4.	AB' = 133.6 million miles; $AB = 26.4$ million miles

Pre-Calculus Math 11

Extra Work Space