Section 7.6 – The Law of Cosines

This booklet belongs to: Block:

- There five cases in which it is possible to solve a general triangle ABC
 - ASA, AAS, ASS (Ambiguous), SAS, and SSS
 - \circ $\,$ ASA and AAS were solved using the LAW of SINES $\,$
 - o SAS and SSS are solved using the LAW of COSINES

The Law of Cosines

For any triangle *ABC* with corresponding sides *a*, *b*, *and c*:

Where did this come from?

• Consider the Oblique triangle ABC

Pre-Calculus Math 11

Using the Law of Cosines for SSS

- When you have a SSS triangle **ALWAYS** find the **largest angle first**.
- This will guarantee that the other two angles are ACUTE
- There is NO AMBIGUOUS CASE for the LAW of Cosines (THANK YOU !!)

Example: Solve $\triangle ABC$, given a = 5, b = 7, and c = 10

• Now we can use the LAW of SINES to find one of the other two angles.

 $\frac{Sin A}{a} = \frac{Sin C}{c} \rightarrow \frac{Sin A}{5} = \frac{Sin 111.8^{\circ}}{10} \rightarrow Sin A = \frac{5(Sin 111.8)}{10} \rightarrow \angle A = 27.7^{\circ}$

So, $180^{\circ} - 27.7^{\circ} - 111.8^{\circ} = \angle B \rightarrow \angle B = 40.5^{\circ}$

Note:If we had solved for another angle first we would have gotten the WRONG
solution. <u>ALWAYS</u> solve the LARGEST ANGLE FIRST in a SSS problem!

2

Using the Law of Cosines for SAS

Example: Solve $\triangle ABC$, given $\angle A = 50^\circ$, b = 12, and c = 5

• Now we can use the LAW of SINES to find one of the other two angles.

$$\frac{Sin A}{a} = \frac{Sin C}{C} \rightarrow \frac{Sin 50^{\circ}}{9.58} = \frac{Sin C}{5} \rightarrow Sin C = \frac{5(Sin 50^{\circ})}{9.58} \rightarrow \angle C = 23.6^{\circ}$$

So, $180^{\circ} - 23.6^{\circ} - 50^{\circ} = \angle B \rightarrow \angle B = 106.4^{\circ}$

Note: If we had solved for another angle first we would have gotten the WRONG solution. <u>ALWAYS</u> solve the SMALLEST ANGLE FIRST in a SAS problem!

Summary of Law of Sines and Law of Cosines
--

Given	Method of Solving			
	1. Find the remaining angle using $(A + C - 100)$			
ASA or AAS	1. Find the remaining angle using $\angle A + \angle B + \angle C = 180^{\circ}$			
	2. Find the remaining sides using the Law of Sines			
	Be aware of the ambiguous case, there may be 2 triangles possible			
ASS	1. Find the angle using Law of Sines			
	2. Find the remaining angle using $\angle A + \angle B + \angle C = 180^{\circ}$			
	3. Find the remaining sides using the Law of Sines			
	1. Find the remaining side using the Law of Cosines			
SAS	2. Find the smaller of the two remaining angles using Law of Sines			
	3. Find the remaining angle using $\angle A + \angle B + \angle C = 180^{\circ}$			
	1. Find the largest angle using the Law of Cosines			
SSS	 Find one remaining angle using the Law of Cosines Find one remaining angle using the Law of Sines 			
333	5 5 5			
	3. Find the remaining angle using $\angle A + \angle B + \angle C = 180^{\circ}$			

Section 7.6 – Practice Questions

Solve each Law of Cosines for the unknown part. Leave answer to 2 decimal places.

1. $a^2 = 5^2 + 3^2 - 2(5)(3)Cos43^\circ$	2. $b^2 = 7^2 + 8^2 - 2(7)(8)Cos115^\circ$
3. $c^2 = 4^2 + 6^2 - 2(4)(6)Cos90^\circ$	4. $7^2 = 3^2 + 6^2 - 2(3)(6)CosA^\circ$
5. $5.3^2 = 2.7^2 + 4.6^2 - 2(2.7)(4.6)\cos B^\circ$	6. $9.3^2 = 6.2^2 + 4.5^2 - 2(6.2)(4.5)CosC^\circ$

Given the following triangles, what angle should be solved for first, and which formula do you use?

Pre-Calculus Math 11

Solve $\triangle ABC$. Round answers to the 1 decimal place.

11.
$$\angle A = 50^{\circ}, b = 10, c = 15$$
 12. $\angle B = 36^{\circ}, a = 4, c = 10$

 13. $\angle C = 60^{\circ}, b = 4, a = 8$
 14. $a = 7, b = 24, c = 25$

15. *a* = 6, *b* = 7, *c* = 13

16. ∠
$$A = 120^{\circ}$$
, $b = 4$, $c = 1$

Solve ΔABC , using either the Law of Sines or Cosines to begin the answer.

17. ∠ $A = 126^{\circ}$, b = 9, c = 12.2

18. ∠ $A = 28^{\circ}$, ∠ $B = 42^{\circ}$, c = 18.2

19.
$$\angle C = 38^\circ, b = 9, c = 7$$
 20. $\angle C = 100^\circ, a = 10, c = 10$

 21. $\angle A = 60^\circ, a = 2\sqrt{3}, c = 4$
 22. $a = 12.3, b = 9.6, c = 8.9$

Answer Key – Section 7.6

1. 3.47	
2. 12.66	
3. 7.21	
4. 96.38°	
5. 89.17°	
6. 119.88°	
7. Find $\angle B$ by Law of Cosines	
8. Find <i>a</i> by Law of Cosines	
9. Find $\angle A$ by Sum of Angles Law	
10. Nothing can be determined	
11. $\angle B = 41.8^{\circ}, \angle C = 88.2^{\circ}, a = 11.5$	
12. $\angle A = 19.2^{\circ}, \angle C = 124.8^{\circ}, b = 7.2$	
13. $\angle A = 89.9^{\circ}, \angle B = 30.1^{\circ}, c = 6.9$	
14. $\angle A = 16.3^{\circ}, \angle B = 73.7^{\circ}, \angle C = 90^{\circ}$	
15. No Solution	
16. $\angle B = 49.1^{\circ}, \angle C = 10.9^{\circ}, a = 4.6$	
17. $\angle B = 22.6^{\circ}, \angle C = 31.4^{\circ}, a = 18.9$	
18. $\angle C = 110^{\circ}, a = 9.1, b = 13.0$	
19. ∠ $A = 89.7^{\circ} \text{ or } 14.3^{\circ} ∠B = 52.3^{\circ} \text{ or } 127.7^{\circ}, a = 11.4 \text{ or } 2.8$	
20. No Solution	
21. $\angle B = 30^{\circ}, \angle C = 90^{\circ}, b = 2$	
22. $\angle A = 83.3^{\circ}, \angle B = 50.8^{\circ}, \angle C = 45.9^{\circ}$	

Pre-Calculus Math 11

Extra Work Space