Section 7.6 - The Law of Cosines

This booklet belongs to:
Block: \qquad

- There five cases in which it is possible to solve a general triangle $A B C$
- ASA, AAS, ASS (Ambiguous), SAS, and SSS
- ASA and AAS were solved using the LAW of SINES
- SAS and SSS are solved using the LAW of COSINES

The Law of Cosines

For any triangle $A B C$ with correspomding sides a, b, and c :

$$
\begin{array}{ll}
a^{2}=b^{2}+c^{2}-2 b c \operatorname{Cos} A & \operatorname{Cos} A=\frac{b^{2}+c^{2}-a^{2}}{2 b c} \\
b^{2}=a^{2}+c^{2}-2 a c \operatorname{Cos} B & \operatorname{Cos} B=\frac{a^{2}+c^{2}-b^{2}}{2 a c} \\
c^{2}=a^{2}+b^{2}-2 a b \operatorname{Cos} C & \operatorname{Cos} C=\frac{a^{2}+b^{2}-c^{2}}{2 a b}
\end{array}
$$

Where did this come from?

- Consider the Oblique triangle $A B C$

Using the Law of Cosines for SSS

- When you have a SSS triangle ALWAYS find the largest angle first.
- This will guarantee that the other two angles are ACUTE
- There is NO AMBIGUOUS CASE for the LAW of Cosines (THANK YOU!!)

Example: Solve $\triangle A B C$, given $a=5, b=7$, and $c=10$

Solution:

$$
\begin{gathered}
c^{2}=a^{2}+b^{2}-2 a b \operatorname{Cos} C \\
10^{2}=5^{2}+7^{2}-2(5)(7) \operatorname{Cos} C
\end{gathered}
$$

$$
100=25+49-70 \operatorname{Cos} C
$$

$$
100=74-70 \operatorname{Cos} C
$$

$$
100-74=-70 \operatorname{Cos} C
$$

$$
26=-70 \operatorname{Cos} C
$$

$$
-\frac{26}{70}=\operatorname{Cos} C
$$

$$
\operatorname{Cos}^{-1}\left(-\frac{26}{70}\right)=\angle C
$$

$$
\angle C=111.8^{\circ}
$$

- Now we can use the LAW of SINES to find one of the other two angles.

$$
\frac{\operatorname{Sin} A}{a}=\frac{\operatorname{Sin} C}{c} \rightarrow \frac{\operatorname{Sin} A}{5}=\frac{\operatorname{Sin} 111.8^{\circ}}{10} \rightarrow \operatorname{Sin} A=\frac{5(\operatorname{Sin} 111.8)}{10} \rightarrow \angle A=27.7^{\circ}
$$

So, $180^{\circ}-27.7^{\circ}-111.8^{\circ}=\angle B \quad \rightarrow \quad \angle B=40.5^{\circ}$

Note: If we had solved for another angle first we would have gotten the WRONG solution. ALWAYS solve the LARGEST ANGLE FIRST in a SSS problem!

Using the Law of Cosines for SAS

Example: Solve $\triangle A B C$, given $\angle A=50^{\circ}, b=12$, and $c=5$

Solution:

$$
\begin{gathered}
a^{2}=b^{2}+c^{2}-2 b c \operatorname{Cos} A \\
a^{2}=12^{2}+5^{2}-2(5)(12) \operatorname{Cos} A \\
a^{2}=144+25-120 \operatorname{Cos} 50^{\circ} \\
a^{2}=169-120 \operatorname{Cos} 50^{\circ} \\
a^{2}=169-77.135 \\
a^{2}=91.865 \\
a=\sqrt{91.865} \\
a=9.5846
\end{gathered}
$$

- Now we can use the LAW of SINES to find one of the other two angles.

$$
\frac{\operatorname{Sin} A}{a}=\frac{\operatorname{Sin} C}{C} \rightarrow \frac{\operatorname{Sin} 50^{\circ}}{9.58}=\frac{\operatorname{Sin} C}{5} \rightarrow \operatorname{Sin} C=\frac{5\left(\operatorname{Sin} 50^{\circ}\right)}{9.58} \rightarrow \angle C=23.6^{\circ}
$$

So, $180^{\circ}-23.6^{\circ}-50^{\circ}=\angle B \quad \rightarrow \quad \angle B=106.4^{\circ}$

Note: If we had solved for another angle first we would have gotten the WRONG solution. ALWAYS solve the SMALLEST ANGLE FIRST in a SAS problem!

Summary of Law of Sines and Law of Cosines

Given	Method of Solving
ASA or AAS	1. Find the remaining angle using $\angle A+\angle B+\angle C=180^{\circ}$ 2. Find the remaining sides using the Law of Sines
ASS	Be aware of the ambiguous case, there may be 2 triangles possible 1. Find the angle using Law of Sines 2. Find the remaining angle using $\angle A+\angle B+\angle C=180^{\circ}$ 3. Find the remaining sides using the Law of Sines
SAS	1. Find the remaining side using the Law of Cosines 2. Find the smaller of the two remaining angles using Law of Sines 3. Find the remaining angle using $\angle A+\angle B+\angle C=180^{\circ}$
SSS	1. Find the largest angle using the Law of Cosines 2. Find one remaining angle using the Law of Sines 3. Find the remaining angle using $\angle A+\angle B+\angle C=180^{\circ}$

Section 7.6 - Practice Questions

Solve each Law of Cosines for the unknown part. Leave answer to 2 decimal places.

1. $a^{2}=5^{2}+3^{2}-2(5)(3) \operatorname{Cos} 43^{\circ}$	2. $b^{2}=7^{2}+8^{2}-2(7)(8) \operatorname{Cos} 115^{\circ}$
3. $c^{2}=4^{2}+6^{2}-2(4)(6) \operatorname{Cos} 90^{\circ}$	$4.7^{2}=3^{2}+6^{2}-2(3)(6) \operatorname{Cos} A^{\circ}$
5. $5.3^{2}=2.7^{2}+4.6^{2}-2(2.7)(4.6) \operatorname{Cos} B^{\circ}$	6.

Given the following triangles, what angle should be solved for first, and which formula do you use?
7.

8.

9.

10.

Solve $\triangle A B C$. Round answers to the 1 decimal place.
11. $\angle A=50^{\circ}, b=10, c=15$
13. $\angle C=60^{\circ}, b=4, a=8$
12. $\angle B=36^{\circ}, a=4, c=10$
14. $a=7, b=24, c=25$
15. $a=6, b=7, c=13$

Solve $\triangle A B C$, using either the Law of Sines or Cosines to begin the answer.
17. $\angle A=126^{\circ}, b=9, c=12.2$
18. $\angle A=28^{\circ}, \angle B=42^{\circ}, c=18.2$
19. $\angle C=38^{\circ}, b=9, c=7$
21. $\angle A=60^{\circ}, a=2 \sqrt{3}, c=4$
20. $\angle C=100^{\circ}, a=10, c=10$
22. $a=12.3, b=9.6, c=8.9$

Answer Key - Section 7.6

1.	3.47
2.	12.66
3.	7.21
4.	96.38°
5.	89.17°
6.	119.88°
7.	Find $\angle B$ by Law of Cosines
8.	Find a by Law of Cosines
9.	Find $\angle A$ by Sum of Angles Law
10. Nothing can be determined	
11. $\angle B=41.8^{\circ}, \angle C=88.2^{\circ}, a=11.5$	
12. $\angle A=19.2^{\circ}, \angle C=124.8^{\circ}, b=7.2$	
13. $\angle A=89.9^{\circ}, \angle B=30.1^{\circ}, c=6.9$	
14. $\angle A=16.3^{\circ}, \angle B=73.7^{\circ}, \angle C=90^{\circ}$	
15. $N o$ Solution	
16. $\angle B=49.1^{\circ}, \angle C=10.9^{\circ}, a=4.6$	
17. $\angle B=22.6^{\circ}, \angle C=31.4^{\circ}, a=18.9$	
18. $\angle C=110^{\circ}, a=9.1, b=13.0$	
19. $\angle A=89.7^{\circ}$ or $14.3^{\circ} \angle B=52.3^{\circ}$ or $127.7^{\circ}, a=11.4$ or 2.8	
20. No Solution	
21. $\angle B=30^{\circ}, \angle C=90^{\circ}, b=2$	
22. $\angle A=83.3^{\circ}, \angle B=50.8^{\circ}, \angle C=45.9^{\circ}$	

Extra Work Space

