Section 7.4-Oblique Triangle (Non-Right Angle)

This booklet belongs to: \qquad Block: \qquad

- An OBLIQUE TRIANGLE is a triangle that does not have a right angle.
- There are four ways to look at the possible information
- In every case, at least one piece of information need to be a side of the triangle.

1. Two angles and one side of a triangle

AAS (angle - angle - side)

If you know two angles of a triangle you can solve for the third,
because they add up to 180°
2. Two sides and their included angle

$\boldsymbol{S A S}($ side - angle - side)
3. Three sides

4. Two sides and the angle opposite one of the sides

ASS (angle - side - side) - Ambiguous Case
or Donkey Theorem

Example 1: \quad Given $\triangle A B C$, with $\angle A=30^{\circ}, b=10, c=8$, find:
a) a
b) $\angle C$
c) $\angle B$

> Remember we label side
lengths the same letter as
the angle that creates it
Solution 1: Start by constructing the triangle. It's good form to start with side $\angle A$ in the bottom left corner.

When calculating trigonometric ratios, it is prudent to use 3 decimals places during calculations

This is an SAS
oblique triangle
a) First solve for h

$$
\sin 30^{\circ}=\frac{h}{8} \quad \rightarrow \quad h=8\left(\sin 30^{\circ}\right) \quad \rightarrow \quad \boldsymbol{h}=\mathbf{4}
$$

Now solve for \boldsymbol{d} using the Pythagorean Theorem or Right Angle Trigonometry with Cosine

$$
\begin{gathered}
h^{2}+d^{2}=8^{2} \\
4^{2}+d^{2}=8^{2} \\
d^{2}=64-16=48 \\
d=\sqrt{48}=6.928
\end{gathered}
$$

or

$$
\cos 30^{\circ}=\frac{d}{8}
$$

$$
d=\cos 30^{\circ}(8)
$$

$$
d=6.928
$$

Since you have \boldsymbol{d} you can now solve for \boldsymbol{e}

$$
10-6.928=3.072
$$

Then you can use Pythagorean Theorem to solve for \boldsymbol{a}

$$
\begin{gathered}
a^{2}=h^{2}+e^{2} \\
a^{2}=4^{2}+3.072^{2} \\
a=\mathbf{5 . 0 4}
\end{gathered}
$$

b) $\tan C=\frac{h}{e}=\frac{4}{3.072}$ $\tan C=1.3021$

$$
\angle C=\tan ^{-1}(1.3021)=52.5^{\circ}
$$

c) $\angle A=30^{\circ}, \angle C=52.5^{\circ}$
$\angle A+\angle B+\angle C=180^{\circ}$
So $\angle \boldsymbol{B}=180^{\circ}-30-52.5^{\circ}=97.5^{\circ}$

Example 2: \quad Given $\triangle A B C$, with $a=8, b=10, c=12$, find:
a) $\angle A$
b) $\angle B$
c) $\angle C$

Remember when drawing a
triangle the largest side should reflect the largest angle

Solution 2: Start by constructing the triangle. It's good form to start with side $\angle A$ in the bottom left corner.

When calculating trigonometric ratios, it is prudent to use 3 decimals places during calculations

a) First solve for $\angle A$, but you need x first

$$
\left.\begin{array}{c|c}
x^{2}+h^{2}=10^{2} \\
h^{2}=10^{2}-x^{2}
\end{array} \right\rvert\, \text { Then } \begin{aligned}
& h^{2}+(12-x)^{2}=8^{2} \\
& h^{2}=8^{2}-(12-x)^{2}
\end{aligned}
$$

This is an SSS
oblique triangle

$$
\cos A=\frac{x}{10}=\frac{7.5}{10}
$$

$$
100-x^{2}=64-144+24 x-x^{2}
$$

$$
\angle A=\cos ^{-1}(0.75)=41.4^{\circ}
$$

$$
100=-80+24 x
$$

$$
24 x=180
$$

$$
x=7.5
$$

b) Solve for $\angle B$
$\cos B=\underline{12-x}=\underline{12-7.5}$

8
8
$\cos B=0.5625$
$\angle \boldsymbol{B}=\cos ^{-1}(0.5625)=55.8^{\circ}$
c) $\angle A=41.4^{\circ}, \angle B=55.8^{\circ}$

$$
\angle A+\angle B+\angle C=180^{\circ}
$$

So $\angle \boldsymbol{C}=180^{\circ}-41.4-55.8^{\circ}=\mathbf{8 2 .} \mathbf{8}^{\circ}$

Example 3: Given $\triangle A B C$, with $\angle A=110^{\circ}, \angle B=20^{\circ}, c=10$, find:
a) $\angle C \quad$ Remember when drawing a
b) b
c) a

$$
\begin{aligned}
& \text { triangle the largest side should } \\
& \text { reflect the largest angle }
\end{aligned}
$$

Solution 3: Start by constructing the triangle. It's good form to start with side $\angle A$ in the bottom left corner.

| With the information |
| :---: | :---: |
| given, start by |
| constructing a Right |
| Angle in the left |
| corner. Label the |
| height h and added |
| length x |$:$| This is an ASA or AAS |
| :--- |
| oblique triangle |

a) Solve angle C first, using the sum of angles in a triangle

$$
\begin{gathered}
\angle A+\angle B+\angle C=180^{\circ} \\
110^{\circ}+20^{\circ}+\angle C=180^{\circ} \quad \rightarrow \quad \angle \boldsymbol{C}=\mathbf{5 0}^{\circ}
\end{gathered}
$$

b) To solve for $\angle B$, we need x and h first, then we can use SOH CAH TOA
(Next couple sections we'll find a new way to do this)

$$
\begin{array}{c:c}
\tan 70^{\circ}=\frac{h}{x} \\
h=x\left(\tan 70^{\circ}\right)
\end{array}: \begin{gathered}
\tan 20^{\circ}=\frac{h}{x+10} \\
h=(x+10)\left(\tan 20^{\circ}\right)
\end{gathered}
$$

Both expressions are equal to h. So you can set them equal to each other.
$\begin{aligned} & x\left(\tan 70^{\circ}\right)=(x+10)\left(\tan 20^{\circ}\right) \\ & x\left(\tan 70^{\circ}\right)=x\left(\tan 20^{\circ}\right)+10\left(\tan 20^{\circ}\right) \\ & x\left(\tan 70^{\circ}\right)-x\left(\tan 20^{\circ}\right)=10\left(\tan 20^{\circ}\right)\end{aligned} \quad \therefore x\left(\tan 70^{\circ}-\tan 20^{\circ}\right)=10 \tan 20^{\circ}$
Now:

$$
h=x \tan 70^{\circ}=(1.53) \tan 70^{\circ}=4.2
$$

So for b :
$b^{2}=x^{2}+h^{2}$
$b^{2}=1.53^{2}+4.2^{2}$

$$
b=\sqrt{19.98} \rightarrow \quad b=4.47
$$

c) $a^{2}=(10+x)+{ }^{2} h \quad 2$

$$
\begin{aligned}
& a^{2}=11.53^{2}+4.2^{2} \\
& a=\sqrt{150.58} \rightarrow \quad a=\mathbf{1 2 . 3}
\end{aligned}
$$

Example 4: \quad Given $\triangle A B C$, with $\angle A=50^{\circ}, a=12, c=8$, find:
a) $\angle B$
b) $\angle C$
c) b

Remember when drawing a

triangle the largest side should reflect the largest angle

Solution 4: Start by constructing the triangle. It's good form to start with side $\angle A$ in the bottom left corner.

When calculating trigonometric ratios, it is prudent to use 3 decimals places during calculations

This is an ASS oblique triangle, it can have several possible outcomes depending on the lengths of the sides.

We will look at this
further In the next section!
a) First solve for $\angle B$, but you need θ, α, and h first
$\sin 50^{\circ}=\frac{h}{8} \rightarrow 8 \sin 50^{\circ}=h \quad \rightarrow \quad h=6.13$
$\cos \alpha=\frac{h}{12}=\frac{6.13}{12} \quad \cos \theta=\frac{h}{8}=\frac{6.13}{8}$
$\angle \alpha=\cos ^{-1}(0.5108)=59.3^{\circ} \quad \angle \theta=\cos ^{-1}(0.7663)=40.0^{\circ} \quad$ So $\angle B=99.3^{\circ}$
b) $\quad \angle A=50.0^{\circ}, \angle B=99.3^{\circ}$

$$
\angle A+\angle B+\angle C=180^{\circ}
$$

So $\angle C=180^{\circ}-50^{\circ}-99.3^{\circ}=\mathbf{3 0 . 7}{ }^{\circ}$
c) Solve for side b
$\cos 50^{\circ}=\frac{x}{8} \quad \cos 30.7^{\circ}=\frac{y}{12}$
$8\left(\cos 50^{\circ}\right)=x \quad 12\left(\cos 30.7^{\circ}\right)=y$
$x=5.14 \quad y=10.32$

$$
\begin{gathered}
b=x+y \\
b=5.14+10.32=\mathbf{1 5} .46
\end{gathered}
$$

Section 7.4 - Practice Problems

Find all the missing sides and angles. Round answer to the nearest tenth.
1.

5. A

Using the information given find what is missing. Side letters are opposite of the same angle letter. You will have to draw an image of the triangle, it helps and is good practice in visualization.
7. $\angle A=50^{\circ}, a=35, c=27$, find $\angle B$
8. $a=23, b=31, c=19$, find $\angle A$
9. $\angle B=94^{\circ}, a=29, c=21$, find $\angle C$
10. $\angle C=21^{\circ}, \angle A=48^{\circ}, b=26$, find c
11. $\angle B=108^{\circ}, \angle C=34^{\circ}, b=68$, find a
13. $\angle C=73^{\circ}, a=12, b=14$, find c
12. $\angle A=80^{\circ}, a=57, c=22$, find $\angle B$
14. $a=10, b=12, c=17$, find $\angle C$

Answer Key - Section 7.4

1. $\angle B=91.3^{\circ}, \angle C=38.7^{\circ}, a=6.1$
2. $\angle C=45^{\circ}, b=15.9, c=12.4$
3. $\angle A=38.6^{\circ}, \angle B=92.9^{\circ}, \angle C=48.5^{\circ}$
4. $\angle B=125^{\circ}, a=11.7, b=16.8$
5. $\angle A=33.8^{\circ}, \angle C=16.2^{\circ}, b=16.5$
$6 . \angle B=26.7^{\circ}, \angle C=113.3^{\circ}, b=4.9$
7. 93.8°
$8.47 .7^{\circ}$
9. 34.5°
10.10 .0
11.44 .0
$12.77 .7^{\circ}$
13.15 .5
$14.100 .8^{\circ}$

Extra Work Space

