Section 7.2 - Standard Form

This booklet belongs to: \qquad Block: \qquad

- This next equation in called: STANDARD FORM
- There is no obvious \boldsymbol{y} - intercept or SLOPE
- It looks like this:

$$
A x+B y=C
$$

- $\boldsymbol{A}>0$ and can't be a fraction
- It is still the equation of a STRAIGHT LINE

Solutions of the Line (Are the points in the line)
\checkmark We have a point with an $(\boldsymbol{x}, \boldsymbol{y})$ coordinate
$\checkmark \quad$ We have an equation with an \boldsymbol{x} and \boldsymbol{y}
\checkmark If we plug in the coordinates and the equation stays equal, the line goes through the point!

Example 1: \quad Does the line $\quad 3 x-2 y=-6$ go through the point $(2,6) ?$

Solution 1:

- In other words:

The is the point $(2,6)$ a point on the line $3 x-2 y=-6 ?$

○ So, sub in 2 for \boldsymbol{x} and 6 for \boldsymbol{y}

$$
\begin{aligned}
3(2)-2(6) & =-6 \\
6-12 & =-6 \\
-6 & =-6
\end{aligned}
$$

Yes, it is a solution; the line goes through the point!

Example 2: Is $(1,3)$ a solution to $x-3 y=9$?

Solution 2: \quad So, sub in 1 for x and 3 for y
$(1)-3(3)=9$
$1-9=9$
$-8=9$

No, it is not a solution; the line does not go through the point!

Example 3: \quad Is $(4,0)$ a solution to $x=4$?

Solution 3: \quad So, sub in 4 for \boldsymbol{x} and since there is no \boldsymbol{y}, sub in nothing

$$
4=4
$$

Yes, it is a solution; the line goes through the point!

Example 4: \quad Is $(-2,5)$ a solution to $3 x+2 y=4 ?$

Solution 4: \quad So, sub in - 2 for x and 5 for y

$$
\begin{gathered}
3(-2)+2(5)=4 \\
-6+10=4 \\
4=4
\end{gathered}
$$

Yes, it is a solution; the line goes through the point!

Graphing this Equation

- What do we know about (x, y) ?
- What about when x is 0 ?
- When \boldsymbol{x} is $\mathbf{0}$, we have the \boldsymbol{y}-intercept

$$
(0, b)
$$

- What about when y is 0 ?
- When \boldsymbol{y} is $\mathbf{0}$, we have the \boldsymbol{x} - intercept

$$
(a, 0)
$$

- It's easiest to start by finding these two points!
- We can set-up a table of values
- It tells us what \boldsymbol{x} is when we have a particular \boldsymbol{y}
- Or what \boldsymbol{y} is when we have a particular \boldsymbol{x}
- You can literally pick any value for \boldsymbol{x} or \boldsymbol{y} and solve for the other!!!

Example 5: \quad Graph $x+y=4$
Solution 5: \quad Set yourself up a Table of Values

- It reads, when x is ... y is ..
i) When x is 0 (sub in 0 for x)

$$
\begin{aligned}
& 0+y=4 \\
& \boldsymbol{y}=\boldsymbol{4}
\end{aligned}
$$

ii) When y is 0 (sub in 0 for y)

$$
\begin{aligned}
& x+0=4 \\
& x=4
\end{aligned}
$$

iii) When \boldsymbol{x} is - $\mathbf{4}$ (sub in x solve for y)

$$
\begin{aligned}
& -4+y=4 \\
& y=4+4 \\
& \boldsymbol{y}=\mathbf{8}
\end{aligned}
$$

x	y
0	4
4	0
-4	8

- For the third point you can pick anything
- I highly suggest you take the value that you got when you solved for \boldsymbol{x}, and flip the sign
- If it was positive use the negative of it, and vice versa
- In this case we will take -4
- But remember you can pick any value, strategy helps though!
- So with the completed table of values we can graph it now
- We have three points:

$$
(0,4),(4,0), \text { and }(-4,8)
$$

- Three points is enough to graph your line and it gives you a chance to check to see if there is an error, all your points should line up

x	y
0	$\mathbf{4}$
$\mathbf{4}$	0
$-\mathbf{4}$	$\mathbf{8}$

Example 6: Graph $\quad 4 x-3 y=12$
Solution 6: \quad Start by identifying your intercepts
$-12-3 y=12 \rightarrow-3 y=24$

$$
y=-8
$$

x	y
0	-4
3	0
-3	-8

Example 7: Graph the following.

Solution 7: \quad This will be a little tricky.

- Go back to algebra, how do we remove multiple fractions?
- Multiply everything by the LCM, in this case:

3

- Then make your table of values
- And graph the results
$3 \cdot \frac{2}{3} x+4 y \cdot 3=4 \cdot 3 \quad \rightarrow \quad 2 x+12 y=12$

x	y
0	1
6	0
-6	2

Technically not Standard Form yet, the A term is a fraction
\qquad

Example 8: Graph the following.

$$
\frac{1}{2} x+\frac{2}{3} y=2
$$

Solution 8: \quad This will be similar to the previous example.

- Go back to algebra, how do we remove multiple fractions?
- Multiply everything by the LCM, in this case:6
- Then make your table of values
- And graph the results

$$
6 \cdot \frac{1}{2} x+\frac{2}{3} y \cdot 6=2 \cdot 6 \quad \rightarrow \quad 3 x+4 y=12
$$

$$
\begin{aligned}
& \text { If } \boldsymbol{x}=\mathbf{0} \text { : } \\
& \qquad \begin{array}{l}
3(0)+4 y=12 \\
4 y=12 \rightarrow \quad \boldsymbol{y}=\mathbf{3}
\end{array} \\
& \text { If } \boldsymbol{y}=\mathbf{0} \text { : } \\
& \qquad \begin{array}{r}
3 x+4(0)=12 \\
3 x=12 \rightarrow \quad \boldsymbol{x}=\mathbf{4}
\end{array} \\
& \text { Pick any point, I'll use } \boldsymbol{x}=-\mathbf{4} \\
& \qquad \begin{array}{r}
3(-4)+4 y=12 \\
-12+4 y=12 \quad
\end{array} \\
& \qquad \begin{array}{r}
\boldsymbol{y}=\mathbf{6}
\end{array}
\end{aligned}
$$

Using Standard Form is really only helpful sometimes.

It gives us the intercepts to be sure, but what if they are not perfect whole number?

It can be cumbersome to use for graphing, so being able to algebraically manipulate it to SlopeIntercept Form has some significant benefits.

That is where we head next.

Converting from Standard to Slope-Intercept

$>$ Now, there will come a time where you would like to have SLOPE-INTERCEPT FORM or STANDARD FORM but you have the opposite.
$>$ The good news is that you can always use ALGEBRA to manipulate the equation you have into the equation you want.

Example: Change the equation from Standard to Slope-Intercept Form

$$
\begin{array}{cll}
3 x-4 y=6 & & \text { - We need } y=m x+b \\
3 x-3 x-4 y=6-3 x & \text { • } & \text { Subtract } 3 x \text { from both sides } \\
-4 y=-3 x+6 & \text { • } & \text { Rearrange the equation } \\
\frac{-4 y}{-4}=\frac{-3 x}{-4}+\frac{6}{-4} & \text { • } & \text { Divide everything by }-4 \\
y & =\frac{\mathbf{3}}{\mathbf{4}} \boldsymbol{x}-\frac{\mathbf{3}}{\mathbf{2}} & \text { • Simplify all the fractions }
\end{array}
$$

Example: \quad Change the equation from Standard to Slope-Intercept Form

$$
\begin{gathered}
-\frac{2}{3} x+\frac{1}{4} y=7 \\
12 \cdot-\frac{2}{3} \mathrm{x}+\frac{1}{4} \mathrm{y} \cdot 12=7 \cdot 12 \\
-8 x+3 y=84 \\
-8 x+8 x+3 y=84+8 x \\
3 y=8 x+84 \\
\frac{3 y}{3}=\frac{8 x}{3}+\frac{84}{3}
\end{gathered}
$$

- We need $y=m x+b$
- Multiply by the LCM to remove fractions
- Simplify the equation
- Add $8 x$ to both sides

Rearrange the equation

- Divided everything by 3

$$
y=\frac{8}{3} x+28
$$

- Simplify all the fractions

$$
\begin{array}{cll}
\frac{5}{3} x-\frac{1}{2} \mathrm{y}=-2 & \text { - We need } y=m x+b \\
6 \cdot \frac{5}{3} \mathrm{x}-\frac{1}{2} \mathrm{y} \cdot 6=-2 \cdot 6 & \text { • } \begin{array}{l}
\text { Multiply by the LCM to remove } \\
10 x-3 y=-12
\end{array} & \begin{array}{l}
\text { fractions } \\
10 x-10 x-3 y=-12-10 x
\end{array} \\
\begin{array}{cl}
-3 y & \text { Simplify the equation } \\
\frac{-3 y}{-3}=\frac{-10 x-12}{-3}-\frac{12}{-3} & \text { Subtract } 10 x \text { from both sides } \\
\boldsymbol{y}=\frac{\mathbf{1 0}}{\mathbf{3}} \mathbf{x}+\mathbf{4} & \text { Rearrange the equation } \\
&
\end{array}
\end{array}
$$

- Simplify all the fractions

Example: \quad Change the equation from Standard to Slope-Intercept Form

$$
\begin{array}{rll}
\frac{x+y}{4}=-7 & & \text { - } \\
4 \cdot \frac{x+y}{4}=-7 \cdot 4 & & \text { We need } y=m x+b \\
x+y=-28 & & \begin{array}{l}
\text { Multiply by the LCM to remove } \\
\text { fractions }
\end{array} \\
x-x+y=-28-x & & \text { - Simplify the equation } \\
y=-x-28 & & \text { - Subtract } x \text { from both sides } \\
y & \text { Simplify the equation }
\end{array}
$$

We can also change from Slope-Intercept Form to Standard Form.

It doesn't have the same benefits for Graphing, but will come in handy in the years ahead.

Example: \quad Change the equation from Slope-Intercept to Standard Form

$$
\begin{array}{cl}
y=\frac{2}{3} x-4 & \text { • We need } A x+B y=C \\
3 \cdot y=3 \cdot \frac{2}{3} x-4 \cdot 3 & \text { • Multiply by the LCM to remove } \\
3 y=2 x-12 & \text { • Simplify the equation } \\
\text { fractions } \\
3 y-3 y=2 x-3 y-12 & \text { • Subtract } 3 y \text { from both sides } \\
0=2 x-3 y-12 & \text { • Rearrange the equation } \\
12+0=2 x-3 y-12+12 & \text { • Add 12 to both sides } \\
12=2 x-3 y & \text { • Rearrange the equation } \\
2 x-3 y=12 & \text { • Make sure } A \text { is a natural number }
\end{array}
$$

Example: \quad Change the equation from Slope-Intercept to Standard Form

$$
\begin{array}{cl}
y=5 x+\frac{2}{3} & \text { • We need } A x+B y=C \\
3 \cdot y=3 \cdot 5 x+\frac{2}{3} \cdot 3 & \text { • Multiply by the LCM to remove } \\
3 y=15 x+2 & \text { • Simplify the equation } \\
3 y-3 y=15 x-3 y+2 & \text { • Subtract } 3 y \text { from both sides } \\
0=15 x-3 y+2 & \text { • Rearrange the equation } \\
0-2=15 x-3 y+2-2 & \text { • Subtract } 2 \text { from both sides } \\
-2=15 x-3 y & \text { • Rearrange the equation } \\
15 x-3 y=-2 & \text { • Make sure } A \text { is a natural number }
\end{array}
$$

$$
\begin{array}{cll}
y=-\frac{3}{4} x+\frac{2}{3} & \bullet & \text { We need } A x+B y=C \\
12 \cdot y=-\frac{3}{4} x \cdot 12+\frac{2}{3} \cdot 12 & & \bullet \\
12 y=-9 x+8 & \text { Multiply by the LCM to remove } \\
\text { fractions } \\
12 y-12 y=-9 x-12 y+8 & \text { • Simplify the equation } \\
0=-9 x-12 y+8 & \text { • } \quad \text { Reabtract } 12 y \text { from both sides } \\
0-8=-9 x-12 y+8-8 & \text { • Subtract } 8 \text { from both sides } \\
-8=-9 x-12 y & \text { • } \quad \text { Rearrange the equation } \\
-9 x-12 y=-8 & \bullet & \text { Rewrite as } A x+B y=C \\
\mathbf{9 x}+\mathbf{1 2 y}=\mathbf{8} & \text { • Multiply everything by }-1 \text { to } \\
& & \text { make sure } A \text { is a natural number }
\end{array}
$$

Example: \quad Change the equation from Slope-Intercept to Standard Form

$$
\begin{array}{cll}
y=\frac{2}{3} x+6 & \bullet & \text { We need } A x+B y=C \\
3 \cdot y=3 \cdot \frac{2}{3} x+6 \cdot 3 & & \bullet \\
3 y=2 x+18 & \text { Multiply by the LCM to remove } \\
\text { fractions } \\
3 y-3 y=2 x-3 y+18 & \text { • Simplify the equation } \\
0=2 x-3 y+18 & \text { • } \quad \text { Reabtract } 3 y \text { from both sides } \\
0-18=2 x-3 y+18-18 & \text { • Subtract } 18 \text { from both sides } \\
-18=2 x-3 y & \text { • Rearrange the equation } \\
\mathbf{2 x}-\mathbf{3 y = - 1 8} & \text { • Make sure } A \text { is a natural number }
\end{array}
$$

Matching Equations to Graphs

When the equations are in Standard Form it's a little different

- You can't look at the SLOPE, Standard Form doesn't have it
- You need to look at the points you can get

$$
\text { ○ Namely: } \quad \text { the } \boldsymbol{x} \text { and } \boldsymbol{y} \text { intercepts }
$$

- Remember:
- that to find the x-intercept we set y to 0
- That to find the y-intercept we set x to 0

x	y
0	
	0

Example: \quad Which graph matches the equation? $\quad x+y=1$

Example: \quad Which graph matches the equation? $\quad 2 x+y=4$

Example: What equation matches the following graph?

i) $\quad-2 x+5 y=10$ When x is $0 ; \quad y$ is 2
ii) $2 x+5 y=10$
iii) $\quad-2 x+5 y=-10$
When: $\quad x$ is $0 ; \quad y$ is 2
y is $0 ; \quad x$ is 5

Section 7.2 - Practice Questions

1. Are the following points solutions to the given equations? Are they POINTS on the given LINE?
a) $(2,4)$
$2 x+3 y=16$
b) $(-6,0)$
$\frac{1}{6} x+13 y=1$
c) $(8,-2)$
$x-2 y=4$
d) $(-3,-4) \quad 4 x+2 y=-20$
2. Graph the following equations, use the table of values to organize your coordinates.
i) $2 x-3 y=12$

ii) $\quad-4 x+5 y=40$

iii) $\frac{2}{3} x-y=2$

iv) $-\frac{3}{5} x+\frac{1}{2} y=3$

3. How many points are there on a line? Explain your thinking.
4. Using your algebraic logic, manipulate the STANDARD FORM equations in to SLOPE-INTERCEPT equations and graph them.
a) $2 x+2 y=-4$
b) $\frac{3}{5} x-\frac{2}{3} y=\frac{2}{3}$
c) $12 x-5 y=10$

d) $-\frac{1}{6} x-\frac{2}{3} y=2$

5. Using your algebraic logic, manipulate the SLOPE-INTERCEPT to STANDARD FORM, remember that $A x+B y=C$ has NO FRACTIONS and $A>0$
a) $y=\frac{2}{5} x+6$
b) $y=-7 x-4$
c) $y=5 x-\frac{2}{3}$
d) $-4+3 x=y$
6. Which graph represents $3 x-2 y=12$ How do you know?

Explanation Goes Here
7. Which equation matches the graph below:

$$
\begin{aligned}
& 2 x+3 y=6 \\
& -2 x-3 y=6 \\
& 2 x-3 y=-6
\end{aligned}
$$

Answer Key - Section 7.2

4. a) $2 x+2 y=-4 \rightarrow y=-x-2$

b) $\quad \frac{3}{5} x-\frac{2}{3} y=\frac{2}{3} \quad \rightarrow \quad y=\frac{9}{10} x-1$

d) $\quad-\frac{1}{6} x-\frac{2}{3} y=2 \quad \rightarrow \quad y=-\frac{1}{4} x-3$

5. a) $2 x-5 y=-30$
b) $7 x+y=-4$
c) $15 x-3 y=2$
d) $3 x-y=4$
6. Second Graph
7. Third Equation

Extra Work Space

