Section 7.1c - Slope Intercept Form - Part 3

This booklet belongs to: \qquad Block: \qquad

Writing the Equation of a Line

- We can also identify information in a graph that will allow us to write the equation of a line.
- This technique is limited to SLOPE-INTERCEPT FORM and graphs where the y - intercept is easily discernible.
* What is the equation of the given line?
- Identify the Slope and the \boldsymbol{y}-intercept and you're done
- The y - intercept is easy to see: $(\mathbf{0}, \mathbf{5})$
- Now from left to right, count the SLOPE
- Our RUN: We move $\mathbf{7}$ places in the positive direction
- Our RISE: We move 5 places up in the positive direction

So, the SLOPE is:

$$
\frac{5}{7}
$$

The Equation of the line then is:

$$
y=\frac{5}{7} x+5
$$

Try another one:

- The y - intercept is easy to see: $(\mathbf{0}, \mathbf{4})$
- Now from left to right, count the SLOPE
- Our RUN: We move 8 places in the positive direction
- Our RISE: We move 4 places up in the negative direction

So, the SLOPE is:

$$
\frac{-4}{8}=\frac{-1}{2}=-\frac{1}{2}
$$

The Equation of the line then is:

$$
y=-\frac{1}{2} x+4
$$

Graphing Lines

- With the SLOPE-INTERCEPT equation it is pretty easy to graph lines too.
- We are given the SLOPE and the \mathbf{Y}-INTERCEPT, so it is really quite simple.
* Identify the y - intercept from the equation and plot it
* Then from that point, count out your SLOPE
* Up and left, up and right, down and left, or down and right

Graph this: $\quad y=\frac{5}{3} x-2$

y-intercept:	$(0,-2)$
Slope:	$\frac{\text { Rise }}{\text { Run }}=\frac{5}{3}$

Always start by plotting your y - intecept and then drawing the rise/run behaviour of your slope to identify the next intersection point!

Let's try a couple more:

Graph: $\quad y=-2 x+1$

$y-$ intercept:	$(0,1)$
Slope:	$\frac{\text { Rise }}{\text { Run }}=\frac{-2}{1}$

Graph: $y=\frac{3}{4} x-5$

y-intercept:	$(0,-5)$
Slope $:$	$\frac{\text { Rise }}{\text { Run }}=\frac{3}{4}$

Obviously, once the line is present, we erase the dotted lines, they only show the Slope Behaviour here.

Equations of Vertical and Horizontal Lines

Horizontal Lines

Let's look at an example:

* What is the Slope?
* What is the y-intercept?

So, the Slope is $\mathbf{0}$, and the \boldsymbol{y}-intercept is 6 .

- But when else is $y=6$?
- Does it matter what the x-value is?
- So, do we even need x in our equation?

It turns out that every horizontal line is simply:

$$
y=b
$$

So, in this case, the equation of the horizontal line is:

$$
y=6
$$

Vertical Lines

$>$ Vertical lines don't have the same y-value all the time, they have the same x-value
$>$ So, does the y-value matter?
$>$ Do we need it in our equation?

It turns out that every vertical line is simply:

$$
x=a
$$

So, in this case, the equation of the vertical line is:

$$
x=-3
$$

It can seem counterintuitive because the x-axis is a Horizontal Line $(y=0)$ and the $y-a x i s$ is a vertical lin $\mathrm{e}(x=0)$, but just consider the behaviour and the points that make up the two types of lines and you can avoid the potential confusion!

Summary

$y=m x+b \quad$ Is the equation for a diagonal line (Slope-Intercept)
$y=? \quad$ Is the equation of a Horizontal line $\quad x=? \quad$ Is the equation of a Vertical line
$b \quad$ Is the value of the y - intercept
$(x, y) \quad$ The coordinates of the point on a line (also the Solution to the Equation)
m
Is the Slope, written: $\quad \frac{\text { Rise }}{\text { Run }}=\frac{\text { Change in height }}{\text { change in length }}=\frac{\text { Change in } y}{\text { Change in } x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Remember when counting out the Slope				
You have a fraction so you can count 4 possible ways:				
The first two give you a consistent POSITIVE SLOPE regardless of the direction you count				
i)	Up and to the Right (POSITIVE RISE/POSITIVE RUN)	$\frac{A}{B} \quad$ which	quals $\frac{A}{B}$	
ii)	Down and to the Left (NEGATIVE RISE/NEGATIVE RUN)	$\frac{-A}{-B}$	which equals	$\frac{A}{B}$
The second two give you a consistent NEGATIVE SLOPE regardless of the direction you count				
iii)	Down and to the Right (NEGATIVE RISE/POSITIVE RUN)	$\frac{-A}{B}$	which equals	$-\frac{A}{B}$
iv)	Up and the Left (POSITIVE RISE/NEGATIVE RUN)	$\frac{A}{-B}$	which equals	$-\frac{A}{B}$

Section 7.1c - Practice Problems

Find the slope of the lines that go through the following points

| 1. $(3,4)$ and $(6,-7)$ | $2 . \quad(-3,8)$ and $(1,-7)$ | $3 . \quad(0,4)$ and $(5,0)$ |
| :--- | :--- | :--- | :--- |
| 4. $(4,4)$ and $(1,1)$ | $5 . \quad(-9,-10)$ and $(-3,-7)$ | $6 .(1,9)$ and $(-4,9)$ |

Write the equation of the lines on the grids below
7.

8.

9.

11.

10.

12.

13. Graph the following lines. Show the mapping of the Slope from at least one point to another
a) $y=x$

c) $y=-2 x+7$

b) $y=\frac{2}{5} x+4$

d) $y=-\frac{3}{5} x-5$

g) $y=-\frac{8}{5} x+4$

f) $\quad x=-4$

h) $y=2 x-6$

Section 7.1c - Answer Key

1. $-\frac{11}{3}$
2. $-\frac{15}{4}$
3. $-\frac{4}{5}$
4. 1
5. $\frac{1}{2}$
6. 0
7. $y=-\frac{3}{5} x+4$
8. $y=3 x+2$
9. $y=-\frac{2}{5} x-2$
10. $y=2 x+5$
11. $y=\frac{4}{5} x+7$
12. $y=-7 x+5$
13.

a) $\quad y=x$

b) $\quad y=\frac{2}{5} x+4$

e)

g) $\quad y=-\frac{8}{5} x+4$

d) $\quad y=-\frac{3}{5} x-5$

f) $\quad x=-4$

h)
$y=2 x-6$

