Section 7.1c – Slope Intercept Form – Part 3

This booklet belongs to:______Block: _____

Writing the Equation of a Line

- We can also **identify information in a graph** that will allow us to write the equation of a line.
- This technique is limited to **SLOPE-INTERCEPT FORM** and graphs where the *y intercept* is easily discernible.
 - What is the equation of the given line?

\circ Identify the Slope and the y - intercept and you're done

Graphing Lines

- With the **SLOPE-INTERCEPT** equation it is pretty easy to graph lines too.
- We are given the **SLOPE** and the **Y-INTERCEPT**, so it is really quite simple.
 - **Identify** the y intercept from the equation and plot it
 - Then from that point, count out your SLOPE
 - Up and left, up and right, down and left, or down and right

Let's try a couple more:

Equations of Vertical and Horizontal Lines

Horizontal Lines

Let's look at an example:

- What is the Slope?
- What is the y intercept?

So, the **Slope is 0**, and the y - intercept is 6.

- But when else is y = 6?
- Does it matter what the x value is?
- So, do we even need *x* in our equation?

It turns out that every horizontal line is simply:

$$y = b$$

So, in this case, the equation of the horizontal line is:

y = 6

Vertical Lines

- > Vertical lines don't have the same y value all the time, they have the same x value
- So, does the y value matter?
- > Do we need it in our equation?

It turns out that every vertical line is simply:

$$x = a$$

So, in this case, the equation of the vertical line is:

x = -3

It can seem counterintuitive because the x - axis is a Horizontal Line (y = 0) and the y - axis is a vertical lin e(x = 0), but just consider the behaviour and the points that make up the two types of lines and you can avoid the potential confusion!

Summary

y = mx + b	y = mx + b Is the equation for a diagonal line (Slope-Intercept)		
y = ? Is the	equation of a Horizontal line $x = ?$	Is the equation of a Vertical line	
b	Is the value of the $m{y}-m{intercept}$		
(<i>x</i> , <i>y</i>)	The coordinates of the point on a line	The coordinates of the point on a line (also the Solution to the Equation)	
m	Is the Slope , written: $\frac{Rise}{Run} = \frac{Change}{change}$	$\frac{e \text{ in height}}{e \text{ in length}} = \frac{Change \text{ in } y}{Change \text{ in } x} = \frac{y_2 - y_1}{x_2 - x_1}$	
Remember when counting out the Slope			
You have a fraction so you can count 4 possible ways :			
The first two give you a consistent POSITIVE SLOPE regardless of the direction you count			
i) Up and	t to the Right (POSITIVE RISE/POSITIVE RUN)	$\frac{A}{B}$ which equals $\frac{A}{B}$	
ii) Down	and to the Left (NEGATIVE RISE/NEGATIVE RUN)	$\frac{-A}{-B}$ which equals $\frac{A}{B}$	
The second two give you a consistent NEGATIVE SLOPE regardless of the direction you count			
iii) Down	and to the Right (NEGATIVE RISE/POSITIVE RUN)) $\frac{-A}{B}$ which equals $-\frac{A}{B}$	
iv) Up and	d the Left (POSITIVE RISE/NEGATIVE RUN)	$\frac{A}{-B}$ which equals $-\frac{A}{B}$	
L			

Section 7.1c – Practice Problems

Find the slope of the lines that go through the following points

1. (3,4) and (6, -7)	2. (-3,8) and (1,-7)	3. (0,4) and (5,0)
4. (4,4) and (1,1)	5. (-9,-10) and (-3,-7)	6. (1,9) and (-4,9)

Write the equation of the lines on the grids below

13. Graph the following lines. Show the mapping of the Slope from at least one point to another

$$d) \quad y = -\frac{3}{5}x - 5$$

f) x = -4

 $h) \qquad y = 2x - 6$

Section 7.1c – Answer Key

