Section 7.1b - Basics of Graphing and Slope Intercept Form - Part 2

Slope-Intercept Equation

$>$ Now think about this, a LINE is made up of an INFINTE number of individual points
> There are two equations we are going to talk about this year
$>$ Here is the first one:

$$
y=m x+b
$$

SLOPE-INTERCEPT FORM

> The variables in this equation are very important

- The \boldsymbol{m} : Is the SLOPE of the line, represented $\frac{R I S E}{R U N}$ also $\frac{C H A N G E \text { IN HEIGHT }}{\text { CHANGE IN LENGTH }}$

The Slope is the same from any point on the line to another The Slope stays constant

- The \boldsymbol{b} : Is the y - intercept, where the line crosses the y-axis

Why b and not y then?

No matter where you cross the y-axis, what is the x-value?

As mentioned before, is always 0

So, every y - intercept, has the coordinates: $(\mathbf{0}, \boldsymbol{b})$

The \boldsymbol{b}, is wherever it crosses the $\boldsymbol{y}-\boldsymbol{a x i s}$.

- Lastly, the x and y.

They represent the $(\boldsymbol{x}, \boldsymbol{y})$ coordinates of every possible point on the line

Every line (except 1 type) has a y-intercept and has a slope. As an example:

$$
y=m x+b \quad \rightarrow \quad y=\frac{2}{3} x+4
$$

* The Slope (\boldsymbol{m}) is: $\quad \frac{2}{3} \quad$ For every 2 you go up, you go right 3, both positive
* Remember that the x and y represent every set of coordinates (x, y)

So, the \boldsymbol{y}-intercept is when the \boldsymbol{x}-value is 0
We can plug $\mathbf{0}$ in to the equation for \boldsymbol{x} and then solve for \boldsymbol{y}
$y=\frac{2}{3} x+4$
$y=\frac{2}{3}(0)+4$
$y=0+4$
$y=4$

- $y=m x+b$
- $y=m(0)+b$
- $y=0+b$
- $y=b$

So $y=b$, when x is 0
That's why b is the y - intercept

Now let's go back to the (x, y), remember that they represent the coordinates of every possible point on the line, they also are called the solution to the $y=m x+b$ equation.

- What I mean by that is that when I plug the \boldsymbol{x} and \boldsymbol{y} values into the equation of a line, it stays equal.

Example:

$$
y=\frac{2}{3} x+4
$$

i) When $x=0$

$$
\begin{equation*}
y=\frac{2}{3}(0)+4 \rightarrow y=4 \quad \text { Coordinates are: } \tag{0,4}
\end{equation*}
$$

ii) When $x=3$

$$
\begin{equation*}
y=\frac{2}{3}(3)+4 \rightarrow y=2+4=6 \text { Coordinates are: } \tag{3,6}
\end{equation*}
$$

iii) When $x=6$

$$
\begin{equation*}
y=\frac{2}{3}(6)+4 \rightarrow y=4+4=8 \text { Coordinates are: } \tag{6,8}
\end{equation*}
$$

- We can continue this infinitely!

So, what do we know so far?
\checkmark Every \boldsymbol{y}-intercept has an \boldsymbol{x}-value of 0
\checkmark Every \boldsymbol{x} - intercept has a \boldsymbol{y}-value of 0
\checkmark We can find an infinite number of coordinates (solutions) for a line

Now for Slope we know a few things too.
\checkmark The Slope of a straight line is consistent
\checkmark The Slope can go up or down
\checkmark The Slope is: $\frac{\text { Rise }}{\text { Run }}=\frac{\text { Change of Height }}{\text { Change in Length }}=\frac{\text { Change in } y}{\text { Change in } x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Slope of a Horizontal Line

* What is the Slope?

Pick any two points on the line and use the Slope Equation

$$
\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4-4}{7-(-2)}=\frac{0}{9}=0
$$

Since there is NO CHANGE IN HEIGHT, every Horizontal Line has a:

Slope of: 0

Slope of a Vertical Line

* What is the Slope?

Pick any two points on the line and use the Slope Equation

$$
\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4-(-4)}{7-7}=\frac{8}{0}=\text { Undefined }
$$

Since there is NO CHANGE IN LENGHT, every Vertical Line has a:

Slope of: Undefined (we cannot divide by 0)

We have seen 4 different types of lines. Their characteristics will result in 4 types of Slope.

Look at them from Left to Right.

$$
\frac{\text { Positive }}{\text { Positive }}=\text { Positive }
$$

Solutions to a Line

- Next is figuring out if a point is on a line. That is the same as saying: Is the following point a solution to the equation of the line.
\checkmark If the point is a solution, then when you plug the (x, y) into the given equation, it will stay equal, and the point is on the line
\checkmark If the point is not a solution, then when you plug the (x, y) into the given equation, it will not stay equal, and the point is not on the line

Example 4: \quad Does the line $y=2 x+5$ go through the point $(1,8)$?

Solution 4:

- \quad Since \boldsymbol{x} is $\mathbf{1}$, we plug $\mathbf{1}$ in for \boldsymbol{x} and since \boldsymbol{y} is $\mathbf{8}$, we plug $\mathbf{8}$ in for \boldsymbol{y}.
- Work through the equation and see if it stays equal.
- If it does, it's a solution (A point on the line)
- If it doesn't, it's not a solution (Not a point on the line)

$$
\begin{gathered}
y=2 x+5 \\
8=2(1)+5 \\
8=2+5 \\
8=7
\end{gathered}
$$

- 8 DOES NOT EQUAL 7

So that means that $(1,8)$ is NOT a solution to $y=2 x+5$

In other words, the point at $(1,8)$ is not on the line with the equation $y=2 x+5$

Example 5:

- Does the line $y=-\frac{2}{5} x+6$ go through the point $(10,2)$?

Solution 5:

$$
\begin{aligned}
& y=-\frac{2}{5}(10)+6 \quad \rightarrow \quad \text { Plug } 2 \text { in for } y \\
& 2=-\frac{20}{5}+6 \quad \rightarrow \quad 2=-\frac{2}{5}(10)+6 \\
& 2=2
\end{aligned}
$$

So that means, the point $(10,2)$ is a point on the line.
$(10,2)$ is a solution to the equation $y=-\frac{2}{5} x+6$

Writing Equations of Lines

Step 1: Identify the \boldsymbol{y}-intercept
Step 2: Identify two points on the grid where the line crosses an intersection of \boldsymbol{x} and \boldsymbol{y} gridlines perfectly

Step 3: Count your SLOPE Rise and Run
Step 4: Fill in the equation:

So, the equation can be filled in to be:

$$
y=\frac{\mathbf{5}}{\mathbf{4}} \boldsymbol{x}+\mathbf{2}
$$

Write the Equation of the Following Graphs

Slope is: $\quad-\frac{8}{6}=-\frac{4}{3}$
y - intercept is: $\quad(0,-3)$
So: $\quad y=-\frac{4}{3} x-3$

Matching Equations to Graphs

- The last concept we will look at in this section is matching graphs to equations and vice versa
- The trick is to take the information we have and use it to our advantage
- If the equation is in Slope-Intercept Form
- Just Identify the SLOPE and y-intercept and use the process of elimination

Example 1: Identify the graph that matches the equation $\quad y=2 x+7$

- Right Away I know what?

○ My \boldsymbol{y}-intercept is +7

- That immediately excludes the $\mathbf{2}^{\text {nd }}$ graph
- It goes through -7
- My Slope is POSITIVE 2
- That removes the $3^{\text {rd }}$ graph
- It has a negative Slope

○ It has to be the $\mathbf{1}^{\text {st }}$ graph

Sometimes it's even easier

Example 2:

Which graph matches the equation: $\quad y=-x+1$

$>$ Why is this so easy?
$>$ Look at the Slope of the equation?

- It's NEGATIVE
$>$ Which graph has a negative slope?
- Only the third one!

What about 1 graph and multiple equations?

- Use elimination and the information you have to narrow down the equations that fit

Example 5: What equation matches the following graph?

i)

ii) $\quad y=-2 x+4$
iii) $y=2 x-4$

Section 7.1b - Practice Questions

1. Are the following points solutions to the given equations? Are they POINTS on the given LINE?
a) $(1,-3) \quad y=3 x-5$
b) (0,5) $\quad y=\frac{2}{3} x+5$
c) $(-2,7) \quad y=\frac{3}{2} x+4$
d) $(8,-1) \quad y=-\frac{1}{8} x$
e) $(3,3) \quad y=\frac{2}{3} x+1$
2. Find 3 different coordinates that exist on the given lines. Remember there are an infinite amount of them.
a) $y=3 x-5$
b) $y=-\frac{6}{7} x+8$
c) $y=\frac{3}{5} x-6$
3. Which graph represents $\quad y=-2 x+3$ How do you know?

Explanation Goes Here

4. Which graph represents $y=\frac{3}{4} x-4 \quad$ How do you know?

Explanation Goes Here
5. Which equation matches the graph below:

$$
\begin{aligned}
& y=3 x+2 \\
& y=-3 x+2 \\
& y=3 x-2
\end{aligned}
$$

Explanation Goes Here

6. Use the given y-intercept and determine the slope of the following lines to write their equations in Slope-Intercept Form
a) Equation:

b) Equation:

c) Equation:

e) Equation:

g) Equation:

d) Equation:

f) Equation:

h) Equation:

Section 7.1b - Answer Key

Extra Work Space

