Section 7.1 – Angles and Their Measure

- Trigonometry is all about the study of angles
- An Angle is determine by rotating an arm in a counter-clockwise position at its endpoint
- The endpoint is called the vertex of the angle
- The arm rotating around is called the terminal arm
 - It can rotate in a clockwise direction (negative angle)
 - Or counter clockwise direction (positive angle)

Angles in Standard Position

An angle θ is said to be in **Standard Position** if its **vertex is at the origin** and it **originates from the positive** x - axis. **Rotating the terminal arm counter clockwise** about the vertex **forms a positive angle** θ , where **rotating clockwise** about the **vertex forms a negative angle** θ .

Examples:

Adrian Herlaar, School District 61

Co-Terminal Angles

- Angles in Standard Position that have the same terminal side are called CO-Terminal angles
- Think about adding or subtracting an entire rotation 360°, from the given angle
- There are an infinite number of Co-Terminal angles, we can add or subtract multiples of 360°

Example 1: If $\theta = 120^{\circ}$, in Standard Position, find two positive and two negative angles that are co-terminal with θ

Solution 1: There are an infinite number of solutions, so add or subtract 360° to your hearts content

 $120^{\circ} + 360^{\circ} = 480^{\circ}$ $120^{\circ} + 2(360^{\circ}) = 840^{\circ}$ $120^{\circ} + 8(360^{\circ}) = 3000^{\circ}$ $120^{\circ} - 360^{\circ} = -240^{\circ}$ $120^{\circ} - 2(360^{\circ}) = -600^{\circ}$ $120^{\circ} - 8(360^{\circ}) = -2760^{\circ}$

Example 2: Find the smallest positive co-terminal angle for

- a) 2692°
- b) -1940°

Solution 2:

a) Divide 2692 by 360 to see now many full rotations have occurred

 $\frac{2692}{360} = 7.47777..$ 7 *full rotations*:
7 · 360 = 2520°
2692° - 2520° = 172°

b) Divide 1940 by 360 to see now many full rotation in the negative direction

 $\frac{-1940}{360} = -5.3888 \dots$ Since we went negative we will need 6 rotations to get back to the positive. $6 \cdot 360 = 2160^{\circ}$

Adrian Herlaar, School District 61

 $-1940^{\circ} + 2160^{\circ} = 220^{\circ}$ www.mrherlaar.weebly.com

Reference Angles

- For and angle θ in Standard Position, the reference angle is the positive acute angle θ' that is formed with the terminal side of θ and the x axis.
- Read that again...
- A reference angle is between 0° and 90° : $0^{\circ} \le \theta' \le 90^{\circ}$
- This will start to make a lot more sense in applications in Section 7.2

Example 3: Find the reference angle for: a) 200°

b) 300°

Solution 3:

$$\theta' = 20^{\circ}$$

www.mrherlaar.weebly.com

Example 4: Determine the smallest positive angle in Q 1, 2, 3, 4 that has a reference angle of 40° **Solution 4:**

Quadrant 3

a) 612° b) -420° c) 844° d) 6425°

Solution 5:

a) $612^{\circ} \rightarrow 612^{\circ} - 360^{\circ} = 252^{\circ}; 252^{\circ} is in Q3$ so: $\theta' = 252^{\circ} - 180^{\circ} = 72^{\circ}$ b) $-420^{\circ} \rightarrow 2(360^{\circ}) - 420^{\circ} = 300^{\circ}; 300^{\circ} is in Q4$ so: $\theta' = 360^{\circ} - 300^{\circ} = 60^{\circ}$ c) $844^{\circ} \rightarrow 844^{\circ} - 2(360^{\circ}) = 124^{\circ}; 124^{\circ} is in Q2$ so: $\theta' = 180^{\circ} - 124^{\circ} = 56^{\circ}$ d) $6425^{\circ} \rightarrow 6425^{\circ} - 18(360^{\circ}) = 55^{\circ}; 55^{\circ} is in Q1$ so: $\theta' = 55^{\circ}$ Ref Angle: 50^{\circ} Ref Angle: 50^{\circ} Ref Angle: 55^{\circ} Ref Angle: 55^{\circ}

Solution 6:

Q1: it is also 20° Q2: 180° - 20° = 160° Q3: 180° + 20° = 200° Q4: 360° - 20° = 340°

Example 7: If Quadrant 2 and 4 have the same reference angle, and the Standard Position Angle in Quadrant 2 is 165°, what is the Standard Position Angle in Quadrant 4?

Solution 7:

If Q2 has an angle in Standard Position of 165° , then its Reference Angle is:

$$180^{\circ} - 165^{\circ} = 15^{\circ}$$

So then the Standard Position Angle in Q4 is:

$$360^{\circ} - 15^{\circ} = 345^{\circ}$$

Section 7.1 – Practice Problems

Sketch the angles in Standard Position

Find the angle of the smallest positive measure co-terminal to the given angle.

Draw an angle θ in Standard Position, where θ is the smallest measure, and the given point is on the end of the terminal arm. Then determine the length of the terminal arm.

Find the reference angle

23. 32°	24. —32°
25. 113°	26. –113°
27. 218°	28. –218°
29. 304°	30. –304°
31. 832°	32. –1213°

Find all the angles, $0^{\circ} \le \theta \le 360^{\circ}$, that have reference angles of the following.

33. 37°	34. 71°
35. U ^o	36. 90°
	8

Answer Key – Section 7.1

1.	See Website
2.	See Website
3.	See Website
4.	See Website
5.	See Website
6.	See Website
7.	See Website
8.	See Website
9.	330°
10.	264°
11.	163°
12.	46°
13.	233°
14.	45°
15.	142°
16.	77°
17.	255°
18.	245°

19. See Website
20. See Website
21. See Website
22. See Website
23. 32°
24. 32°
25. 67°
26. 67°
27. 38°
28. 38°
29. 56°
30 . 56°
31. 68°
32. 47°
33 . 37°, 143°, 217°, 323°
34. 71°, 109°, 251°, 289°
35. 0°, 180°
36. 90°, 270°

Extra Work Space