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Section 6.4 – Graphing Trigonometric Functions 

• In Section 6.1 we looked at the Unit Circle. Remember that the Unit Circle has radius 1. 
• Consider the Unit Circle as the Terminal Arm Rotates in a Counter-clockwise direction, with 

the point (𝑎, 𝑏) in the end of the Terminal Arm. 

 

 

 

 

 

 

• So, with that we can make the following observations: 

 

 

 

 

 

 

 

 

 

 

 

  

 

𝑥 1 
𝑏 

𝑎 

(0,1) 

𝑃(𝑎, 𝑏) 

(0, −1) 

(−1,0) (1,0) 

• But from this we get a very interesting 

Trigonometric Relationship. 

• If we consider SOH CAH TOA we get: 

𝐬𝐢𝐧 𝒙 =
𝑂𝑝𝑝

𝐻𝑦𝑝
=

𝑏

1
= 𝒃 

𝐜𝐨𝐬 𝒙 =
𝐴𝑑𝑗

𝐻𝑦𝑝
=

𝑎

1
= 𝒂 

 

 

1 

In the Unit Circle, the coordinate at the end of 

the terminal arm has values where: 

The 𝒂 coordinate is the radian value of 𝐜𝐨𝐬 𝒙 

The 𝒃 coordinate is the radian value of 𝐬𝐢𝐧 𝒙 

Looking at the Unit Circle, you can see that 

both Cosine and Sine never exceed 1!  

Test it, plug 𝐬𝐢𝐧−𝟏 𝟏. 𝟐 into your calculator. 

You’ll get Error 2. Because it Does Not Exist!!  

 

 

𝑷(𝒂, 𝒃) = (𝐜𝐨𝐬 𝒙, 𝐬𝐢𝐧 𝒙) 

𝜋

2
  

3𝜋

2
  

0 𝑜𝑟 2𝜋 𝜋 

We get the following pattern when we consider how Sine and Cosine vary as 𝑥 varies. 

𝑥 𝑦 = sin 𝑥 𝑦 = cos 𝑥 

0 𝑡𝑜 
𝜋

2
 0 𝑡𝑜 1 1 𝑡𝑜 0 

𝜋

2
 𝑡𝑜 𝜋 1 𝑡𝑜 0 0 𝑡𝑜 − 1 

𝜋 𝑡𝑜 
3𝜋

2
 

0 𝑡𝑜 − 1 −1 𝑡𝑜 0 

3𝜋

2
 𝑡𝑜 2𝜋 

−1 𝑡𝑜 0 0 𝑡𝑜 1 
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Graphing a Sine Curve: A Wave Function             𝒚 = 𝐬𝐢𝐧 𝒙  for 𝟎 ≤ 𝒙 ≤ 𝟐𝝅 

• Consider the Radian values in Quadrant 1, and then use reference angles for the other Quadrants. 

• Remember to consider the sign of the ratio depending on the Quadrant 

• 𝐬𝐢𝐧 𝒙 is: Positive in 𝑸𝟏 and 𝑸𝟐 

• 𝐬𝐢𝐧 𝒙 is: Negative in 𝑸𝟑 and 𝑸𝟒 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Quadrant 1 

𝑥 0 𝜋

6
 

𝜋

4
 

𝜋

3
 

𝜋

2
 

sin 𝑥 𝟎 𝟏

𝟐
 

1

√2
= 𝟎. 𝟕𝟏 √3

2
= 𝟎. 𝟖𝟕 

𝟏 

 

Quadrant 2 (second value is the reference angle) 

𝑥 2𝜋

3
=

𝜋

3
 

3𝜋

4
=

𝜋

4
 

5𝜋

6
=

𝜋

6
 

𝜋 = 0 

sin 𝑥 √3

2
= 𝟎. 𝟖𝟕 

1

√2
= 𝟎. 𝟕𝟏 

𝟏

𝟐
 

𝟎 

 

Quadrant 3 (second value is the reference angle) 

𝑥 7𝜋

6
=

𝜋

6
 

5𝜋

4
=

𝜋

4
 

4𝜋

3
=

𝜋

3
 

3𝜋

2
=

𝜋

2
 

sin 𝑥 
−

𝟏

𝟐
 −

𝟏

√𝟐
= −𝟎. 𝟕𝟏 −

√𝟑

𝟐
= −𝟎. 𝟖𝟕 −1 

 

Quadrant 4 (second value is the reference angle) 
𝑥 5𝜋

3
=

𝜋

3
 

7𝜋

4
=

𝜋

4
 

11𝜋

6
=

𝜋

6
 

2𝜋 = 0 

sin 𝑥 
−

√3

2
= −𝟎. 𝟖𝟕 −

1

√2
= −𝟎. 𝟕𝟏 −

𝟏

𝟐
 𝟎 

 
The curve shows the height of the terminal arm as it rotates (as the 𝒓𝒂𝒅𝒊𝒂𝒏 value 𝒙 moves 

from 𝟎 𝒕𝒐 𝟐𝝅. You can see that as the Terminal Arm Rotates through the Quadrants, some of 

the    𝒚 − 𝒂𝒙𝒊𝒔 𝒗𝒂𝒍𝒖𝒆𝒔 are repeated.  sin 𝑥, using reference angles, is Positive in Quadrants 𝟏 

and 𝟐 (𝟎 𝒕𝒐 𝝅), then transitions into Negatives in Quadrant 𝟑 and 𝟒 (𝝅 𝒕𝒐 𝟐𝝅). 

Here is the Terminal Rotating and a Sine Wave Function: sin 𝑥. You can see the height of the Terminal Arm 

during rotation produces the wave as we move along the 𝑥 − 𝑎𝑥𝑖𝑠. This is one full rotation, called a Period. 

 

 
 

(
𝜋

4
,

1

√2
) 

(
𝜋

2
, 1) 

(
7𝜋

4
, −

1

√2
) 

(
7𝜋

6
, −

1

2
) 
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Graphing a Cosine Curve: A Wave Function             𝒚 = 𝐜𝐨𝐬 𝒙  for 𝟎 ≤ 𝒙 ≤ 𝟐𝝅 

• Consider the Radian values in Quadrant 1, and then use reference angles for the other Quadrants. 

• Remember to consider the sign of the ratio depending on the Quadrant 

• 𝐜𝐨𝐬 𝒙 is: Positive in 𝑸𝟏 and 𝑸𝟒 

• 𝐜𝐨𝐬 𝒙 is: Negative in 𝑸𝟐 and 𝑸𝟑 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Quadrant 1 

𝑥 0 𝜋

6
 

𝜋

4
 

𝜋

3
 

𝜋

2
 

cos 𝑥 𝟏 √𝟑

𝟐
= 𝟎. 𝟖𝟕 

1

√2
= 𝟎. 𝟕𝟏 

1

2
 𝟎 

 

Quadrant 2 (second value is the reference angle) 

𝑥 2𝜋

3
=

𝜋

3
 

3𝜋

4
=

𝜋

4
 

5𝜋

6
=

𝜋

6
 

𝜋 = 0 

cos 𝑥 
−

𝟏

𝟐
 

1

√2
= −𝟎. 𝟕𝟏 −

√𝟑

𝟐
= −𝟎. 𝟖𝟕 

−𝟏 

 

Quadrant 3 (second value is the reference angle) 

𝑥 7𝜋

6
=

𝜋

6
 

5𝜋

4
=

𝜋

4
 

4𝜋

3
=

𝜋

3
 

3𝜋

2
=

𝜋

2
 

cos 𝑥 
−

√𝟑

𝟐
= −𝟎. 𝟖𝟕 −

𝟏

√𝟐
= −𝟎. 𝟕𝟏 −

𝟏

𝟐
 0 

 

Quadrant 4 (second value is the reference angle) 
𝑥 5𝜋

3
=

𝜋

3
 

7𝜋

4
=

𝜋

4
 

11𝜋

6
=

𝜋

6
 

2𝜋 = 0 

cos 𝑥 1

2
 

1

√2
= 𝟎. 𝟕𝟏 √𝟑

𝟐
= 𝟎. 𝟖𝟕 𝟏 

 
The curve shows the horizontal length of the terminal arm as it rotates (as the 𝒓𝒂𝒅𝒊𝒂𝒏 value 𝒙 

move from 𝟎 𝒕𝒐 𝟐𝝅. You can see that as the Terminal Arm Rotates through the Quadrants, some of 

the    𝒚 − 𝒂𝒙𝒊𝒔 𝒗𝒂𝒍𝒖𝒆𝒔 are repeated. cos 𝑥, using reference angles, is Positive in Quadrants 𝟏 and 𝟒, 

Negatives in Quadrant 𝟐 and 𝟑. You may notice it looks similar to a Sine Wave, just shifted. 

Here is the Terminal Rotating and a Cosine Wave Function: cos 𝑥. You can see the height of the Terminal Arm 

during rotation produces the wave as we move along the 𝑥 − 𝑎𝑥𝑖𝑠. This is one full rotation, called a Period. 

 

 

𝜋

2
 

 

𝜋

4
 

(
𝜋

4
,

1

√2
) 

(0,1) 
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7𝜋

4
,

1

√2
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(
𝜋

2
, 0) 
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3
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1

2
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Both Sine and Cosine Waves extend Horizontally to infinity in both directions. Each interval, as 

previously mentioned, runs from 𝟎 → 𝟐𝝅 and we call this A Period. 

Graph of 𝒚 = 𝐬𝐢𝐧 𝒙 

 

 

 

 

 

 

 

 

 

Graph of 𝒚 = 𝐜𝐨𝐬 𝒙 

𝒚 = 𝐜𝐨𝐬 𝒙 

cos 0 = 1 

 

 

 

 

 

 

 

 

Period = 2𝜋  Domain: All Real Numbers  Range: −1 ≤ 𝑦 ≤ 1 

 

Period = 2𝜋  Domain: All Real Numbers  Range: −1 ≤ 𝑦 ≤ 1 
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The above graphs can seem convoluted and challenging to grasp. If it helps, just start with the 4 

main angle measures in both sin 𝑥  𝑎𝑛𝑑 cos 𝑥. Consider the Quadrantal Points (0, 
𝜋

2
, 𝜋,

3𝜋

2
, 2𝜋)  

𝒚 = 𝐬𝐢𝐧 𝒙 

sin 0 = 0 

sin
𝜋

2
= 1 

sin 𝜋 = 0 

sin
3𝜋

2
= −1 

sin 2𝜋 = 0 

 

 

 

𝒚 = 𝐜𝐨𝐬 𝒙 

cos 0 = 1 

 

cos
𝜋

2
= 0 

cos 𝜋 = −1 

cos
3𝜋

2
= 0 

cos 2𝜋 = 1 

 

 

 

 

 

Quadrant 1 Quadrant 2 

Quadrant 3 Quadrant 4 

This is one Period of a Sine Wave 

This is one Period of a Cosine Wave 

 

Quadrant 1 Quadrant 2 

Quadrant 3 

Quadrant 4 
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Amplitude 

• We when looked at transformation     𝒚 = 𝒂𝒇(𝒙) was a vertical expansion/compression 

• With trig functions we get similar results 

𝒚 = 𝒂 𝐬𝐢𝐧 𝒙    and   𝒚 = 𝒂 𝐜𝐨𝐬 𝒙  means the height of our wave is multiplied by the absolute 

value of 𝒂 or |𝒂|. 

• The height and depth of the basic wave always maxes out at 𝟏 and −𝟏 respectively  

• Also, if 𝑎 < 0 (negative), we have a reflection of the 𝑦 − 𝑣𝑎𝑙𝑢𝑒𝑠 in the 𝑥 − 𝑎𝑥𝑖𝑠 

The graph below contains the comparisons between: 

𝑦 = sin 𝑥  𝑦 =
1

3
sin 𝑥  𝑦 = −3 sin 𝑥  

 

 

 

 

 

 

 

 

 

Period 

• We when looked at transformation     𝒚 = 𝒇𝒃(𝒙) was a horizontal expansion/compression 

• With trig functions we get similar results 

For: 𝒚 = 𝐬𝐢𝐧 𝒃𝒙    and   𝒚 = 𝐜𝐨𝐬 𝒃𝒙   

Consider the period of both is: 0 ≤ 𝑥 ≤ 2𝜋 so that means, for sin 𝑏𝑥 and cos 𝑏𝑥 the Period is: 

0 ≤ 𝑏𝑥 ≤ 2𝜋        →         
0

𝑏
≤

𝑏𝑥

𝑏
≤

2𝜋

𝑏
      →          𝟎 ≤ 𝒙 ≤

𝟐𝝅

|𝒃|
 

 

 

𝑦 = sin 𝑥;  has amplitude of |1| = 1 

 

𝑦 =
1

3
sin 𝑥;  has amplitude of |

1

3
| =

1

3
 

 

𝑦 = −3sin 𝑥;  has amplitude of |−3| = 3 
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• The Period is always positive, and denotes a compression/expansion of the given wave 

• To determine the Period of an Expanded or Compressed graph, we use the Formula: 

𝑃𝑒𝑟𝑖𝑜𝑑 =
2𝜋

|𝑏|
 

 

The graph below contains the comparisons between: 

𝑦 = cos 3𝑥  𝑦 = cos
𝑥

3
  𝑦 = cos 𝑥     for 0 ≤ 𝑥 ≤ 2𝜋 

 

 

 

 

 

 

 

 

 

Phase Shift 

• We when looked at transformation     𝒚 = 𝒇(𝒙 − 𝒄) was a horizontal shift left/right 

• With trig functions we get similar results 

For: 𝒚 = 𝐬𝐢𝐧 𝒃(𝒙 − 𝒄)    and   𝒚 = 𝐜𝐨𝐬 𝒃(𝒙 − 𝒄)    

 

Example: Given 𝑦 = sin(2𝑥 −
𝜋

2
)  factor out the 2 to leave 𝑥.       𝑦 = sin 2(𝑥 −

𝜋

4
) 

By doing this we end up with: 

 Period of:  
𝟐𝝅

|𝟐|
 = 𝝅     Phase Shift of: 

𝝅

𝟒
 to the right 

 

 

 

𝑦 = cos 𝑥;  has Period of   
2𝜋

|1|
 = 2𝜋 

 

𝑦 = cos
𝑥

3
;  has Period of 

2𝜋

|
1

3
|
 = 6𝜋 

 

𝑦 = cos 3𝑥;  has Period of 
2𝜋

|3|
 = 

2𝜋

3
 

 

Make sure you have factored 

out any 𝑏 value first! 
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For the sake of the examples, we will look at Sin Graphs, but the process is the same for Cosine.  

Compare: 

𝑦 = sin 𝑥  𝑦 = sin(3𝑥 −
𝜋

2
)   𝑦 = sin 3(𝑥 −

𝜋

6
) 

 

The graph below contains the comparisons between: 

𝑦 = sin 𝑥  𝑦 = sin(3𝑥 −
𝜋

2
)   𝑦 = sin 3(𝑥 −

𝜋

6
)     for 0 ≤ 𝑥 ≤ 2𝜋 

 

𝑦 = sin (3𝑥 −
𝜋

2
)        →      𝑦 = sin 3 (𝑥 −

𝜋

6
)               

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑦 = sin 𝑥;   has Period of 2𝜋 and  

no Phase Shift 

Both  

𝑦 = sin (3𝑥 −
𝜋

2
)        𝑎𝑛𝑑     𝑦 = sin 3 (𝑥 −

𝜋

6
)  

Have: 

Period of: 
2𝜋

3
  and Phase Shift of: 

𝜋

6
 to the right 

So, the graph begins at     
𝜋

6
  

And to find the coordinate that marks the end 

of the Period, add the phase shift to the Period: 

 
2𝜋

3
+

𝜋

6
   →    

4𝜋

6
+

𝜋

6
=

5𝜋

6
 

 

 

The second two are 

actually the same graph! 

This stuff can get challenging. 

Consider: 

• The scale of your 𝑥 − 𝑎𝑥𝑖𝑠 

• The Period 

• Then the Phase Shift 

• Faction Basics!!! 
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Vertical Displacement  

• We when looked at transformation     𝒚 = 𝒇(𝒙) + 𝒅 was a vertical shift up/down 

• With trig functions we get similar results 

For: 𝒚 = 𝐬𝐢𝐧(𝒙) + 𝒅    and   𝒚 = 𝐜𝐨𝐬(𝒙) + 𝒅    

If 𝑑 > 0 we have a vertical shift up 𝑑 𝑢𝑛𝑖𝑡𝑠 

If 𝑑 < 0 we have a vertical shift down 𝑑 𝑢𝑛𝑖𝑡𝑠 

The graph below contains the comparisons between: 

𝑦 = sin 𝑥  and   𝑦 = sin(𝑥) + 2 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑦 = sin 𝑥;  has No Vertical Shift 

 

𝑦 = sin(𝑥) + 2  is shifted up 2 𝑢𝑛𝑖𝑡𝑠 

 

 

 

Summary of Trigonometric Transformations 

Consider the form:  𝑓(𝑥) = 𝑎 sin 𝑏(𝑥 − 𝑐) + 𝑑    and   𝑓(𝑥) = 𝑎 cos 𝑏(𝑥 − 𝑐) + 𝑑 

Assume: 𝑎 ≠ 0, 𝑏 > 0 

Amplitude:  |𝒂|  Phase Shift:  (𝒙 − 𝒄) shift right 𝑐 𝑢𝑛𝑖𝑡𝑠 (𝒙 + 𝒄) shifts left 

𝑐 𝑢𝑛𝑖𝑡𝑠 

Period:  
𝟐𝝅

𝒃
  Vertical Displacement:  𝒅 𝒖𝒏𝒊𝒕𝒔 𝒅 > 𝟎 𝒖𝒑;   𝒅 < 𝟎 𝒅𝒐𝒘𝒏 
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Example 1: Find the amplitude, period, phase shift, and vertical displacement of the following 

a) 𝑦 = −2 sin
𝜋

6
(𝑥 − 4) + 2  b) 3 cos (

3𝑥

4
−

𝜋

4
) − 1 

 

Solution 1: Do not forget to factor out the 𝑏 𝑡𝑒𝑟𝑚, when necessary 

a) 𝑦 = −2 sin
𝜋

6
(𝑥 − 4) + 2  

 
 
 
 
 
 
 
 
 

b) 3 cos (
3𝑥

4
−

𝜋

4
) − 1         →       3 cos

3

4
(𝑥 −

𝜋

3
) − 1 

 
 
 
 
 
 
 
 
 
 
 

 

 

• Now let’s put it all together and graph some trigonometric functions after transformations 

• Consider the scale of your 𝑥 − 𝑎𝑥𝑖𝑠 and remember to plot the 4 Quadrantal Points as Guides 

 

 

 

 

Amplitude:  |−2| = 𝟐 

Period:   
2𝜋
𝜋

6

 = 2𝜋 ∙ 
6

𝜋
 

=  𝟏𝟐 

Phase Shift: 

(𝑥 − 4) = 0 

𝑥 = 4 

Shift 𝟒 𝒖𝒏𝒊𝒕𝒔 to the 𝒓𝒊𝒈𝒉𝒕 

Vertical Displacement: 

𝑑 = + 2 

Shift 𝟐 𝒖𝒏𝒊𝒕𝒔 up 

Amplitude:  |3| = 𝟑 

Period:   
2𝜋

3

4

 = 2𝜋 ∙ 
4

3
 

=
𝟖𝝅

𝟑
 

Phase Shift: 

(𝑥 −
𝜋

3
) = 0 

𝑥 =
𝜋

3
 

Shift  
𝜋

3
 𝒖𝒏𝒊𝒕𝒔 to the 𝒓𝒊𝒈𝒉𝒕 

Vertical Displacement: 

𝑑 = −1 

Shift 𝟏 𝒖𝒏𝒊𝒕 𝒅𝒐𝒘𝒏 
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Example 2: Graph 𝑦 = −2 sin
𝜋

4
(𝑥 + 3) + 1 

Solution 2: Factor if necessary, identify the key information 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Amplitude =  2 

Phase Shift = −3 𝑜𝑟 3 𝑢𝑛𝑖𝑡𝑠 𝑙𝑒𝑓𝑡 

Vertical Disp. =  1 𝑢𝑛𝑖𝑡 𝑢𝑝 

Period = 
2𝜋

(
𝜋

4
)
 =  𝟖 

Once you have your Period, divide it by 4 to the distance between the Key Quadrantal Points. 

8

4
= 2 

Our Quadrantal (Peak, Original Height, Valley, Original Height) Points occur every 2 units. 

In this case, being a Sine Wave, we start at −3, but are bumped up 1, (−3, 1), with amplitude of 2. 

• Look out! Then 𝒂 − 𝒗𝒂𝒍𝒖𝒆 is negative, so we start down instead of up. 

• So, the first valley occurs 𝟐 units away but at an amplitude of 𝟐, so (−𝟏, −𝟏).  

• Then we are back to our starting height, 𝟐 more units away, so (𝟏, 𝟏) 

• Then we hit our peak 𝟐 units after that, so (𝟑, 𝟑) 

• Then we are back to our starting point 𝟐 units further (𝟓, 𝟏) 

• This gives us one full period; from −3   →      5    we have moved 8 𝑢𝑛𝑖𝑡𝑠 

 

Plot those key points and draw a smooth 

curve between them. 

You’ll notice since the Period was a whole 

number; 8. The scale of the 𝑥 − 𝑎𝑥𝑖𝑠 is 1. 

This makes for easier plotting and 

graphing of the curve. 
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Example 3: Graph 𝑦 = 3 cos(2𝑥 − 3𝜋) − 3 

Solution 3: Factor if necessary, identify the key information 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Amplitude =  3 

Phase Shift = 𝑦 = 3 cos(2𝑥 − 3𝜋) − 3      →       𝑦 = 3 cos 2 (𝑥 −
3𝜋

2
) − 3;    

3𝜋

2
 units to the right 

Vertical Disp. =  3 𝑢𝑛𝑖𝑡𝑠 𝑑𝑜𝑤𝑛 

Period = 
2𝜋

2
 = 𝝅 

Once you have your Period, divide it by 4 to the distance between the Key Quadrantal Points.  
𝜋

4
 

Our Quadrantal (Peak, Original Height, Valley, Original Height) Points occur every 
𝜋

4
 units. 

In this case, being a Cosine Wave, we start at the peak, so with an amplitude of 3, and vertical 

displacement of −3, we stretch from 1 𝑡𝑜 3, then shift down 3 𝑡𝑜 0, and right 
3𝜋

2
  to  (

3𝜋

2
, 0), with  

• We start down from  (
3𝜋

2
, 0) 

• So, if we move  𝜋/4 units right we end up at 7𝜋/4 but down 3; (
𝟕𝝅

𝟒
, −𝟑), this is our midline 

• Then we hit the valley 𝝅/𝟒 units right at an amplitude of 𝟑, so (𝟐𝝅, −𝟔).  

• Then we are back to our midline, 𝝅/𝟒 more units away, so (
𝟗𝝅

𝟒
, −𝟑) 

• Then we return to our peak 𝝅/𝟒 more units away, so (
𝟏𝟎𝝅

𝟒
, 𝟎) 𝒐𝒓 (

𝟓𝝅

𝟐
, 𝟎) 

 

 

Plot those key points and draw a smooth 

curve between them. 

You’ll notice since the Period was 𝜋 and 

the phase shift  
𝜋

4
 , we used a scale of  

𝜋

4
 

for the 𝑥 − 𝑎𝑥𝑖𝑠. This makes for easier 

plotting and graphing of the curve. 

We take for granted your ability to find 

equivalent fractions, the detail is not 

provided here but assumed. Be careful. 
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Example 4: Write the equation of the following graph in terms of both Sine and Cosine 

 

 

 

 

 

 

 

 

Solution 4: You can always find a Sine and Cosine representation, it just depends where you 

start looking. For a Sine Wave you start at 0, for a Cosine Wave you start at 1 (Or 

where necessary depending on Vertical Displacement and Amplitude). Considering 

the infinite flow of a wave, you can start anywhere, so there are infinite possible 

answers. Watch the scale of the Grid. 

Start by identifying the key pieces. 

 

 

 

 

Phase Shift depends on our starting point. 

 

 

 

 

 

 

Amplitude:  |
3

2
| =

𝟑

𝟐
 

 

Period:   
2𝜋

𝑏
 = 16 

𝑏 =  
2𝜋

16
=

𝝅

𝟖
 

Vertical Displacement: 

𝑑 = −
1

2
 

 

For Sine: 

Start at 𝒙 = −𝟔 

𝑦 =
3

2
sin

𝜋

8
(𝑥 + 6) −

1

2
 

Start at 𝒙 = 𝟐 

𝑦 = −
3

2
sin

𝜋

8
(𝑥 − 2) −

1

2
 

For Cosine: 

Start at 𝒙 = −𝟐 

𝑦 =
3

2
cos

𝜋

8
(𝑥 + 2) −

1

2
 

Start at 𝒙 = −𝟏𝟎 

𝑦 = −
3

2
cos

𝜋

8
(𝑥 + 10) −

1

2
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Graphing 𝒚 = 𝐭𝐚𝐧 𝒙 

We have a specific trigonometric identity to consider when we discuss Tangent. 

Recall that: 

𝐭𝐚𝐧 𝜽 =
𝐬𝐢𝐧 𝜽

𝐜𝐨𝐬 𝜽
 

This provides us with an issue. We have a discontinuity in the Tangent graph. Why? Because by 

the fraction, Tangent is undefined when 𝐜𝐨𝐬 𝜽 = 𝟎. 

When does this happen? It happens when: 

𝜽 =
𝝅

𝟐
 

And then every 𝝅 after that. Remember our graphing, we have Vertical Asymptotes at this interval. 

 

 

 

 

  

 

 

Period:   𝜋 

Domain: All Real Numbers, but:  

 

 

Range: All Real Numbers 

Amplitude: None for Tangent  

𝜋

2
 ±𝑛𝜋,   𝑛 is an integer 

 

Period of a Tangent Function 

Much like Sine and Cosine, the Compression and Expansion of the Period is given by: 

𝑷𝒆𝒓𝒊𝒐𝒅 =
𝝅

|𝒃|
 

Example: Find the Period of:  tan 2𝑥 

a) 𝑷𝒆𝒓𝒊𝒐𝒅 = 
𝝅

|𝒃|
= 

𝝅

|𝟐|
= 

𝝅

𝟐
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Section 6.4 – Practice Problems 

1. Which function listed below, matches the details described in the columns 

Graph 𝐴 𝐵 𝐶 𝐷 𝐸 𝐹 

Amplitude 2 3 2 3 3 2 

Period 𝜋 𝜋 3𝜋 3𝜋 4𝜋

3
 

2𝜋

3
 

Phase Shift 𝜋

3
 −

𝜋

6
 −

2𝜋

3
 −

3𝜋

4
 

𝜋

3
 

𝜋

6
 

Vertical Disp. −2 2 −2 3 3 −3 

 

 

𝑓(𝑥) = 2 cos
2

3
(𝑥 +

2𝜋

3
) − 2 

  
𝑔(𝑥) = 3 cos (

2

3
𝑥 +

𝜋

2
) + 3 

 

  

ℎ(𝑥) = −2 sin 2 (𝑥 −
𝜋

3
) − 2   𝑖(𝑥) = −2 cos (3𝑥 −

𝜋

2
) − 3  

  

𝑗(𝑥) = −3 sin 2 (𝑥 +
𝜋

6
) + 2   

𝑘(𝑥) = 3 sin (
3

2
𝑥 −

𝜋

2
) + 3 

 

  

2. Match the 𝑓(𝑥) function with the corresponding 𝑔(𝑥) function, such that 𝑓(𝑥) = 𝑔(𝑥) for all 𝑥 

 

a) 𝑓(𝑥) = sin 𝑥 A   𝑔(𝑥) = cos(−𝑥 + 𝜋) 

b) 𝑓(𝑥) = −sin 𝑥 B   𝑔(𝑥) = − sin (𝑥 −
𝜋

2
) 

c) 𝑓(𝑥) = cos 𝑥 C   𝑔(𝑥) = cos (𝑥 −
𝜋

2
) 

d) 𝑓(𝑥) = −cos 𝑥 D   𝑔(𝑥) = cos (𝑥 +
𝜋

2
) 

Room to write down thoughts and work through ideas. 
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3. State the Amplitude, Period, Phase Shift and Vertical Displacement for the graph of each given 

function.  

 

a) 𝑦 = 
1

3
 sin (2𝑥 +

𝜋

3
) − 1 b) 𝑦 = −

1

2
 sin 𝜋 (𝑥 +

3

4
) + 1 

c) 𝑦 = −4 cos
𝜋

3
(𝑥 − 1) + 2 d) 𝑦 = − cos 2 (

𝜋

6
− 𝑥) 
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e) 𝑦 = 3 sin (
2𝜋

3
− 𝜋𝑥) − 2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

f) 𝑦 = 
3

2
 cos 2 (𝑥 +

𝜋

4
) 

 

4. What is the Period of the following functions? 

 

a) 𝑦 = 2 tan
1

3
𝑥 

 
 
 
 
 
 
 
 
 
 
 
 

b) 𝑦 = −2 tan
𝜋

2
𝑥 
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5. Write an equation in the form  𝑦 = 𝑎𝑠𝑖𝑛𝑏(𝑥 − 𝑐) and  𝑦 = 𝑎 cos 𝑏(𝑥 − 𝑐),  where 𝑐 is the 

smallest positive number and 𝑎 > 0, 𝑏 > 0  

 

a)  b)  

c)  d)  
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e)  f)  

g)  h)  
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i)  j)  

 

6. Accurately sketch at least one full Period of the graph of:   𝑦 = −3 sin
𝜋

3
(𝑥 + 2) + 1 
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7. Accurately sketch at least one full Period of the graph of:   𝑦 = 2 cos (
𝜋

2
𝑥 + 𝜋) − 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

8. Find a function in the form 
𝑦 = 𝑎 sin 𝑏𝑥 + 𝑐  where there is a 
maximum point at (2, 3) and the next 
closest minimum point is at (6, −7) 

9. Find a function in the form 
𝑦 = 𝑎 cos 𝑏𝑥 + 𝑐  where there is a 
maximum point at (2, 3) and the next 
closest minimum point is at (6, −7) 
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10. a) The graph below describes the function  𝑦 = 𝑎 sin 𝑏(𝑥 − 𝑐) + 𝑑.  Write a sine 

equation to describe the graph if:  i)  𝒂 > 𝟎   and   ii) 𝒂 < 𝟎 

 

 

 

 

 

 

 

 

 

 

 

b) The graph can also be described as a function  𝑦 = 𝑎 cos 𝑏(𝑥 − 𝑐) + 𝑑.  Write a cosine 

equation to describe the graph if:  i)  𝒂 > 𝟎   and   ii) 𝒂 < 𝟎 

 

 

 

 

 

 

 

 

 

See Website for Detailed Answer Key  

 

 

i)  

 

 

 

ii)  

 

iii)  

 

 

 

iv)  
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Extra Work Space 


