Section 6.2 – Trigonometric Functions on a Cartesian Grid

- Were back to looking at Acute Angles with the x axis (reference angles) and the relationship they give our triangles created as our Terminal Arm rotates around in Standard Position
- In Grade 10 and 11 we talked all about the Three Trigonometric Ratios
- In this grade, we include three more and discuss our measure in terms of Radians

Algebraic Sings of the Trigonometric Functions

- We spent a lot of time on these in Grade 11, but here it is again
- Also, we are looking at the **Three New Trigonometric Ratios**: sec θ , csc θ , cot θ
- It is important to notice that they are the RECIPROCAL of the first three
- This relationship means the Quadrant and Sign scenario doesn't change.

Quadrant 1

Quadrant 2

Quadrant 3

Quadrant 4

Summary

$\sin\theta$ a	nd cscθ]	$\cos\theta$ at	nd secθ		$\tan \theta$ and	nd $\cot \theta$
у			у			у	
+	+		_	+		_	+
_	_	x	_	+	x	+	

Example 1: What Quadrant has $\sin \theta < 0$, $\tan \theta > 0$

Solution 1:

- Where is $\sin \theta < 0$? *Q3 and Q4*
- Where is $\tan \theta > 0$? *Q1 and Q3*

So, we need the Quadrant where we have overlap. In this case: Q3

Example 2: Determine
$$\cos \theta$$
, when $\csc \theta = -\frac{7}{\sqrt{3}}$ and $\tan \theta < 0$

Solution 2: Draw a picture to see what is going on.

 $\csc \theta < 0$ in Q3 and Q4, and $\tan \theta < 0$ in Q2 and Q4, so we need to make our sketch in Q4.

Adrian Herlaar, School District 61

www.mrherlaar.weebly.com

Example 4: Determine
$$\cot \theta$$
, when $\sin \theta = \frac{\sqrt{3}}{2}$ and $\cos \theta < 0$

Solution 4: Draw a picture to see what is going on.

 $\cos \theta < 0$ in Q2 and Q3, and $\sin \theta > 0$ in Q1 and Q2, so we need to make our sketch in Q2.

Example 5: Given the point (-2, 1) on the terminal side of angle θ , what are the six trigonometric ratios?

Solution 5: Draw a picture to see what is going on. (-2, 1) is located in Q2.

Adrian Herlaar, School District 61

Example 6: Determine $\sin \theta$ and $\cos \theta$, if θ is in Standard Position of a terminal arm in the position: 2x - 5y = 0, $x \le 0$

Solution 6: Draw a picture to see what is going on. $2x - 5y = 0 \rightarrow y = \frac{2}{5}x$

Example 7: Determine the coordinate 12 units from the origin in Q4 and $\tan \theta = -\frac{3}{4}$

Solution 7: Draw a picture to see what is going on.

Example 8: If $\sin \theta = \frac{\sqrt{3}}{2}$ find:

a) $\csc \theta$ b) $\cos(90^\circ - \theta)$

Solution 8:

a) Since $\sin \theta$ and $\csc \theta$ are reciprocals of each other: $\csc \theta = \frac{2}{\sqrt{3}}$

b) For this question consider the angle relationship in a right-angle triangle

$$\sin \theta = \frac{a}{c} \quad and \quad \cos(90^\circ - \theta) = \frac{a}{c}$$

Therefore:
$$\sin \theta = \cos(90^\circ - \theta) \quad \text{so} \quad \cos(90^\circ - \theta) = \frac{\sqrt{3}}{2}$$

Note:

This comes back around for Inverse Trigonometric Functions in Calculus

$$\sin \theta = \cos(90^\circ - \theta) \qquad \cos \theta = \sin(90^\circ - \theta) \qquad \tan \theta = \cot(90^\circ - \theta)$$
$$\cot \theta = \tan(90^\circ - \theta) \qquad \sec \theta = \csc(90^\circ - \theta) \qquad \csc \theta = \sec(90^\circ - \theta)$$

Pre-Calculus 12

Section 6.2 – Practice Problems

1. Find the missing value of the right-angle triangle with sides *a*, *b* and hypotenuse *c*

a) <i>a</i> = 5, <i>b</i> = 12, <i>c</i> =?	b) <i>a</i> = 2, <i>b</i> = 3, <i>c</i> =?
c) <i>a</i> = 15, <i>c</i> = 17, <i>b</i> =?	d) $b = 2\sqrt{2}, c = 3, a = ?$
e) $c = 3\sqrt{5}, b = 6, a = ?$	f) $c = \sqrt{17}, a = 2\sqrt{2}, b = ?$

2. Determine the Quadrant in which θ is found, given the following information.

			i		
a)	$\sin \theta > 0$,	$\sec \theta > 0$	b)	$\tan \theta < 0$,	$\cos \theta > 0$

c) $\csc \theta > 0$, $\cot \theta < 0$	d) $\cos \theta < 0$, $\csc \theta < 0$
e) $\sin \theta < 0$, $\tan \theta < 0$	f) $\cot \theta > 0$, $\sec \theta < 0$
g) $\tan \theta < 0$, $\csc \theta > 0$	h) $\cos \theta > 0$, $\sec \theta < 0$
i) $\sin\theta < 0$, $\cot\theta < 0$	j) $\tan \theta < 0$, $\sec \theta > 0$

3. Find the value of the indicated function

a) If $\csc \theta = 2$, $\sin \theta = ?$	b) If $\cos \theta = -\frac{2}{3}$, $\sec \theta = ?$
c) If $\tan \theta = -5$, $\cot \theta = ?$	d) If $\sin \theta = -0.23$, $\csc \theta = ?$
e) If $\sec \theta = 2.35$, $\cos \theta = ?$	f) If $\cot \theta = -2.4$, $\tan \theta = ?$

4. Find the acute angle θ , given the following information for the trigonometric functions

a)
$$\sin 30^{\circ} = \cos \theta \text{ so } \theta = ?$$

b) $\tan 65^{\circ} = \cot \theta \text{ so } \theta = ?$
c) $\sec 25^{\circ} = \csc \theta \text{ so } \theta = ?$
d) $\cos \frac{\pi}{4} = \sin \theta \text{ so } \theta = ?$
e) $\cot \frac{\pi}{6} = \tan \theta \text{ so } \theta = ?$
f) $\csc \frac{\pi}{3} = \sec \theta \text{ so } \theta = ?$

5. Given the point on the Terminal Arm in Standard Position, Evaluate all six trigonometric functions

$\sin\theta =$	$\cos \theta =$	$\tan \theta =$
$\csc \theta =$	$\sec\theta =$	$\cot \theta =$

$\sin\theta =$	$\cos \theta =$	$\tan \theta =$
$\csc \theta =$	$\sec \theta =$	$\cot \theta =$

$\sin\theta =$	$\cos \theta =$	$\tan \theta =$
$\csc \theta =$	$\sec \theta =$	$\cot \theta =$

$\sin\theta =$	$\cos \theta =$	$\tan \theta =$
$\csc \theta =$	$\sec \theta =$	$\cot \theta =$

$\sin\theta =$	$\cos \theta =$	$\tan \theta =$
$\csc \theta =$	$\sec \theta =$	$\cot \theta =$

6. Given the one trigonometric function, find the other 5.

a)
$$\sin\theta = \frac{5}{13} \ \theta \ is \ in \ Q1$$

$\sin\theta = \frac{5}{13}$	$\cos \theta =$	$\tan \theta =$
$\csc \theta =$	$\sec \theta =$	$\cot \theta =$

b)
$$\tan \theta = \frac{8}{15} \ \theta \ is \ in \ Q3$$

$\sin\theta =$	$\cos \theta =$	$\tan\theta = \frac{8}{15}$
$\csc \theta =$	$\sec \theta =$	$\cot \theta =$

c)
$$\sec\theta = \frac{3}{2} \ \theta \ is \ in \ Q4$$

$\sin\theta =$	$\cos \theta =$	$\tan \theta =$
$\csc \theta =$	$\sec\theta = \frac{3}{2}$	$\cot \theta =$

d) $\csc \theta = 3 \tan \theta < 0$

$\sin\theta =$	$\cos \theta =$	$\tan \theta =$		
$\csc \theta = 3$	$\sec \theta =$	$\cot \theta =$		

e) $\cot \theta = -2.4 \quad \sin \theta > 0$

$\sin\theta =$	$\cos \theta =$	$\tan \theta =$
$\csc \theta =$	$\sec \theta =$	$\cot \theta = -2.4$

f) $\cos \theta = -0.238 \quad \tan \theta > 0$

$\sin \theta =$	$\cos\theta = -0.238$	$\tan \theta =$		
$\csc \theta =$	$\sec \theta =$	$\cot \theta =$		

7. Find the six trigonometric functions of θ if θ is an angle created by the Terminal Arm in Standard Position and is located on the cartesian plane according to the given function.

b)
$$2x - 3y = 0$$
, $y \le 0$

x

c)
$$\sqrt{5}x + 2y = 0, y \le 0$$

 $\begin{array}{c|c}
\sin\theta = & \cos\theta = & \tan\theta = \\
\csc\theta = & \sec\theta = & \cot\theta = \\
\end{array}$

d) x = 0 $y \le 0$

8. Determine the coordinates of the point at the given distance from the origin in the stated quadrant, if θ is its position angle.

a)	Distance of 10, $Q2$, $\sin \theta = \frac{3}{5}$	b) Distance of 3, $Q3$, $\tan \theta = 1$
c)	Distance of 8, $Q1$, sec $\theta = 2$	d) Distance of 8, Q2, $\csc \theta = \frac{13}{5}$
9.	Let <i>B</i> be an acute angle where $\sin B = a$. Find $\csc B$ and $\cos(90^\circ - B)$ in terms of <i>a</i> .	10. Let P be an acute angle where $\cos P = b$. Find $\sec P$ and $\sin(\frac{\pi}{2} - P)$ in terms of b

11. The terminal side of angle θ in Standard Position, goes through the intersection point of the given curves. Find the intersection point, then find $\sin \theta$ and $\cos \theta$

a)	2x - y = 10	$\sin\theta =$	b)	$y = x^2 + 4x$		$\sin\theta =$
	3x + y = 5	$\cos \theta =$		y = -4x - 16		$\cos \theta =$
12.	Find all angles of θ , $0 \le \theta < \sin \theta = \cos \theta$	360°, where	13.	If $1 + \sin \theta = 3 \sin \theta$, Find $\cos \theta$.	where	an heta < 0 .

14. Show that:

15. Show that:

See Website for Detailed Answer Key

Extra Work Space