Section 6.2 - Trigonometric Functions on a Cartesian Grid

- Were back to looking at Acute Angles with the \boldsymbol{x} - axis (reference angles) and the relationship they give our triangles created as our Terminal Arm rotates around in Standard Position
- In Grade 10 and 11 we talked all about the Three Trigonometric Ratios
- In this grade, we include three more and discuss our measure in terms of Radians

Trigonometric Ratios of Acute Angles

For a given acute angle θ with have these ratios

Algebraic Sings of the Trigonometric Functions

- We spent a lot of time on these in Grade 11, but here it is again
- Also, we are looking at the Three New Trigonometric Ratios: $\boldsymbol{\operatorname { s e c } \theta} \boldsymbol{\theta}, \boldsymbol{\operatorname { c s c }} \boldsymbol{\theta}, \boldsymbol{\operatorname { c o t } \theta}$
- It is important to notice that they are the RECIPROCAL of the first three
- This relationship means the Quadrant and Sign scenario doesn't change.

Quadrant 1

For θ in $Q 1: \quad x>0, y>0$
$\sin \theta=\frac{y}{r}=\frac{+}{+}=+\quad \csc \theta=\frac{r}{y}=\frac{+}{+}=+$
$\cos \theta=\frac{x}{r}=\frac{+}{+}=+\quad \sec \theta=\frac{r}{x}=\frac{+}{+}=+$
$\tan \theta=\frac{y}{x}=\frac{+}{+}=+\quad \cot \theta=\frac{x}{y}=\frac{+}{+}=+$

Quadrant 2

Quadrant 3

	$\operatorname{For} \theta \operatorname{in} Q 3: \quad x<0, y<0$	
$\sin \theta=\frac{y}{r}=\frac{-}{+}=-$	$\csc \theta=\frac{r}{y}=\frac{+}{-}=-$	
$\cos \theta=\frac{x}{r}=\frac{-}{+}=-$	$\sec \theta=\frac{r}{x}=\frac{+}{-}=-$	
	$\tan \theta=\frac{y}{x}=\frac{-}{-}=+$	$\cot \theta=\frac{x}{y}=\frac{-}{-}=+$

Quadrant 4

Summary

Example 1: What Quadrant has $\boldsymbol{\operatorname { s i n }} \boldsymbol{\theta}<\mathbf{0}, \boldsymbol{\operatorname { t a n }} \boldsymbol{\theta}>\mathbf{0}$

Solution 1:

Where is $\sin \theta<0$? $\quad Q 3$ and $Q 4$
Where is $\tan \theta>0$? $\quad Q 1$ and $Q 3$
So, we need the Quadrant where we have overlap. In this case: Q3

Example 2: Determine $\cos \theta$, when $\csc \theta=-\frac{7}{\sqrt{3}}$ and $\tan \theta<0$
Solution 2: Draw a picture to see what is going on.
$\csc \theta<0$ in Q3 and Q4, and $\tan \theta<0$ in Q2 and Q4, so we need to make our sketch in Q4.

We know that $\boldsymbol{r}=\mathbf{7}$ (can't be negative)
and
$y=-\sqrt{3}$, so, we use Pythagorean Theorem for x

$$
\begin{gathered}
x^{2}=(7)^{2}-(-\sqrt{3})^{2} \\
x^{2}=49-3=46 \\
x=\sqrt{46}
\end{gathered}
$$

Therefore:

$$
\cos \theta=\frac{\sqrt{46}}{7}
$$

Example 3: Determine $\sec \theta$, when $\cot \theta=\frac{2}{5}$
Solution 3: Draw a picture to see what is going on.
$\sec \theta=\frac{r}{x}$ and we have $\cot \theta=\frac{x}{y}$ so we need to solve for r be aware $\cot \theta>0$ in Q1 and Q3
We know $x=2$ and $y=5$ so we can use
Pythagorean Theorem for r

$$
r^{2}=2^{2}+5^{2}
$$

$$
r^{2}=4+25=29
$$

$r=\sqrt{29}$
Therefore:
$\sec \boldsymbol{\theta}=-\frac{\sqrt{\mathbf{2 9}}}{\mathbf{2}}$ and $\mathbf{\operatorname { s e c } \boldsymbol { \theta } = \frac { \sqrt { \mathbf { 2 9 } } } { \mathbf { 2 } }}$

4

www.mrherlaar.weebly.com

Example 4: Determine $\cot \theta$, when $\sin \theta=\frac{\sqrt{3}}{2}$ and $\cos \theta<0$
Solution 4: Draw a picture to see what is going on.
$\cos \theta<0$ in Q2 and Q3, and $\sin \theta>0$ in Q1 and Q2, so we need to make our sketch in Q2.

We know that $\boldsymbol{r}=\mathbf{2}$ (can't be negative)
and
$\boldsymbol{y}=\sqrt{3}$, so, we use Pythagorean Theorem for x

$$
\begin{gathered}
x^{2}=(2)^{2}-(\sqrt{3})^{2} \\
x^{2}=4-3=1 \\
x=1
\end{gathered}
$$

$$
\cot \theta=-\frac{1}{\sqrt{3}}
$$

Example 5: Given the point $(-2,1)$ on the terminal side of angle θ, what are the six trigonometric ratios?

Solution 5: \quad Draw a picture to see what is going on. $(-2,1)$ is located in Q2.

Example 6: Determine $\sin \theta$ and $\cos \theta$, if θ is in Standard Position of a terminal arm in the position: $2 x-5 y=0, x \leq 0$

Solution 6: Draw a picture to see what is going on. $2 x-5 y=0 \rightarrow y=\frac{2}{5} x$

Example 7: Determine the coordinate 12 units from the origin in Q 4 and $\tan \theta=-\frac{3}{4}$
Solution 7: Draw a picture to see what is going on.

Adrian Herlaar, School District 61

www.mrherlaar.weebly.com

Example 8: If $\sin \theta=\frac{\sqrt{3}}{2}$ find:
a) $\csc \theta$
b) $\cos \left(90^{\circ}-\theta\right)$

Solution 8:

a) Since $\sin \theta$ and $\csc \theta$ are reciprocals of each other: $\quad \boldsymbol{\operatorname { c s c }} \boldsymbol{\theta}=\frac{2}{\sqrt{3}}$
b) For this question consider the angle relationship in a right-angle triangle

Angles in a triangle add to $\mathbf{1 8 0}^{\circ}$

In a right-angle triangle, the other two angles add to $\mathbf{9 0}^{\circ}$

And if we consider SOH CAH TOA:

$$
\sin \theta=\frac{a}{c} \quad \text { and } \quad \cos \left(90^{\circ}-\theta\right)=\frac{a}{c}
$$

Therefore:

$$
\sin \theta=\cos \left(90^{\circ}-\theta\right) \quad \text { so } \quad \cos \left(90^{\circ}-\theta\right)=\frac{\sqrt{3}}{2}
$$

Note:
This comes back around for Inverse Trigonometric Functions in Calculus

$$
\begin{array}{lll}
\sin \theta=\cos \left(90^{\circ}-\theta\right) & \cos \theta=\sin \left(90^{\circ}-\theta\right) & \tan \theta=\cot \left(90^{\circ}-\theta\right) \\
\cot \theta=\tan \left(90^{\circ}-\theta\right) & \sec \theta=\csc \left(90^{\circ}-\theta\right) & \csc \theta=\sec \left(90^{\circ}-\theta\right)
\end{array}
$$

Section 6.2 - Practice Problems

1. Find the missing value of the right-angle triangle with sides a, b and hypotenuse c

a) $a=5, b=12, c=?$	b) $a=2, b=3, c=?$
c) $a=15, c=17, b=?$	d) $b=2 \sqrt{2}, c=3, a=?$
e) $c=3 \sqrt{5}, b=6, a=?$	

2. Determine the Quadrant in which θ is found, given the following information.
a) $\sin \theta>0, \quad \sec \theta>0$
b) $\tan \theta<0, \cos \theta>0$

c) $\csc \theta>0, \cot \theta<0$	d) $\cos \theta<0, \csc \theta<0$
e) $\sin \theta<0, \tan \theta<0$	f) $\cot \theta>0, \sec \theta<0$
g) $\tan \theta<0, \csc \theta>0$	h) $\cos \theta>0, \sec \theta<0$
i) $\sin \theta<0, \cot \theta<0$	j) $\tan \theta<0, \sec \theta>0$

3. Find the value of the indicated function

a) If $\csc \theta=2, \sin \theta=?$	b) If $\cos \theta=-\frac{2}{3}, \sec \theta=$?
c) If $\tan \theta=-5, \cot \theta=$?	d) If $\sin \theta=-0.23, \csc \theta=$?
e) If $\sec \theta=2.35, \cos \theta=?$	f) If $\cot \theta=-2.4, \tan \theta=$?

4. Find the acute angle θ, given the following information for the trigonometric functions

a) $\sin 30^{\circ}=\cos \theta$ so $\theta=?$	b) $\tan 65^{\circ}=\cot \theta \operatorname{so} \theta=?$
c) $\sec 25^{\circ}=\csc \theta$ so $\theta=?$	d) $\cos \frac{\pi}{4}=\sin \theta \operatorname{so} \theta=?$
e) $\cot \frac{\pi}{6}=\tan \theta \operatorname{so} \theta=?$	f) $\csc \frac{\pi}{3}=\sec \theta \operatorname{so} \theta=?$

5. Given the point on the Terminal Arm in Standard Position, Evaluate all six trigonometric functions
a)

$\sin \theta=$	$\cos \theta=$	$\tan \theta=$
$\csc \theta=$	$\sec \theta=$	$\cot \theta=$

b)

$\sin \theta=$	$\cos \theta=$	$\tan \theta=$
$\csc \theta=$	$\sec \theta=$	$\cot \theta=$

c)

$\sin \theta=$	$\cos \theta=$	$\tan \theta=$
$\csc \theta=$	$\sec \theta=$	$\cot \theta=$

Pre-Calculus 12
d)

$\sin \theta=$	$\cos \theta=$	$\tan \theta=$
$\csc \theta=$	$\sec \theta=$	$\cot \theta=$

e)

$\sin \theta=$	$\cos \theta=$	$\tan \theta=$
$\csc \theta=$	$\sec \theta=$	$\cot \theta=$

6. Given the one trigonometric function, find the other 5 .
a) $\sin \theta=\frac{5}{13} \theta$ is in $Q 1$

$\sin \theta=\frac{5}{13}$	$\cos \theta=$	$\tan \theta=$
$\csc \theta=$	$\sec \theta=$	$\cot \theta=$

b) $\tan \theta=\frac{8}{15} \theta$ is in $Q 3$

$\sin \theta=$	$\cos \theta=$	$\tan \theta=\frac{8}{15}$
$\csc \theta=$	$\sec \theta=$	$\cot \theta=$

c) $\sec \theta=\frac{3}{2} \theta$ is in $Q 4$

$\sin \theta=$	$\cos \theta=$	$\tan \theta=$
$\csc \theta=$	$\sec \theta=\frac{3}{2}$	$\cot \theta=$

d) $\csc \theta=3 \tan \theta<0$

$\sin \theta=$	$\cos \theta=$	$\tan \theta=$
$\csc \theta=3$	$\sec \theta=$	$\cot \theta=$

e) $\cot \theta=-2.4 \sin \theta>0$

$\sin \theta=$	$\cos \theta=$	$\tan \theta=$
$\csc \theta=$	$\sec \theta=$	$\cot \theta=-2.4$

f) $\cos \theta=-0.238 \tan \theta>0$

$\sin \theta=$	$\cos \theta=-0.238$	$\tan \theta=$
$\csc \theta=$	$\sec \theta=$	$\cot \theta=$

7. Find the six trigonometric functions of θ if θ is an angle created by the Terminal Arm in Standard Position and is located on the cartesian plane according to the given function.
a) $3 x+5 y=0, x \geq 0$

$\sin \theta=$	$\cos \theta=$	$\tan \theta=$
$\csc \theta=$	$\sec \theta=$	$\cot \theta=$

b) $2 x-3 y=0, \quad y \leq 0$

$\sin \theta=$	$\cos \theta=$	$\tan \theta=$
$\csc \theta=$	$\sec \theta=$	$\cot \theta=$

c) $\sqrt{5} x+2 y=0, \quad y \leq 0$

$\sin \theta=$	$\cos \theta=$	$\tan \theta=$
$\csc \theta=$	$\sec \theta=$	$\cot \theta=$

d) $x=0 \quad y \leq 0$

$\sin \theta=$	$\cos \theta=$	$\tan \theta=$
$\csc \theta=$	$\sec \theta=$	$\cot \theta=$

8. Determine the coordinates of the point at the given distance from the origin in the stated quadrant, if θ is its position angle.
a) Distance of $10, Q 2, \sin \theta=\frac{3}{5}$
b) Distance of $3, Q 3, \tan \theta=1$
d) Distance of $8, Q 2, \csc \theta=\frac{13}{5}$
9. Let B be an acute angle where $\sin B=a$. Find $\csc B$ and $\cos \left(90^{\circ}-B\right)$ in terms of a.
10. Let P be an acute angle where $\cos P=b$. Find $\sec P$ and $\sin \left(\frac{\pi}{2}-P\right)$ in terms of b
11. The terminal side of angle θ in Standard Position, goes through the intersection point of the given curves. Find the intersection point, then find $\sin \theta$ and $\cos \theta$
a) $2 x-y=10$
$3 x+y=5$
$\sin \theta=$
$\cos \theta=$
b) $\begin{aligned} y & =x^{2}+4 x \\ y & =-4 x-16\end{aligned}$
$\sin \theta=$
$\cos \theta=$
12. Find all angles of $\theta, 0 \leq \theta<360^{\circ}$, where $\sin \theta=\cos \theta$
13. If $1+\sin \theta=3 \sin \theta$, where $\tan \theta<0$. Find $\cos \theta$.
14. Show that:
$h=\frac{d}{\cot \alpha-\cot \beta}$

15. Show that:
$h=\frac{d}{\cot \alpha+\cot \beta}$

Extra Work Space

