Section 6.1 – Interest, Investments, and Loans

This booklet belongs to: _____Block: ____Block: _____Block: _____Block: _____Block: _____Block: _____Block: ____Block: ____Block: ____Block: _____Block: ____Block: _____Block: ____Block: ____Block: ____Block: ____Block: _____Block: ____Block: ___Block: ____Block: ____Block: ____Block: ____Block: ___Block: ____Block: ____Block: ___Block: ___Block: ___Block: ___Bloc

Investments

- Financial investing is the act of setting aside money with the hope of receiving a greater amount back in the future
- A particular way to get this back is to invest in low-risk, low interest savings
- These type of investment pay interest on the money invested, either: Simple or Compound

Simple Interest

- Interest money that is added to the PRINCIPAL (money invested or borrowed)
- It is decided based on a given percentage rate
- Low Interest Rates
 - Awesome for a borrower, you pay less to the lender
 - Bad if you are trying to grow interest on savings
- High Interest Rates
 - o Brutal/Crippling for a borrower, you pay more to the lender
 - Great if it is interest earned in savings
- Simple Interest is calculated this way: I = Prt
 - I: is the amount of interest calculated
 - *P*: is the Principal (the amount of money borrowed or saved)
 - r: is the Percentage Rate, expressed as a decimal (25% = 0.25)
 - t: is Time, in years

Example:Find the future amount of an investment of \$8000 at simple interest for 5yrs at 6%.Solution:I = PrtHere:P = \$8000t = 5r = 6% = 0.06I = (8000)(0.06)(5)I = 2400So in 5 years without touching the money, you earn an extra \$2400, giving a new total of:8000 + 2400 = \$10 400

Example: Yazia borrowed \$5200 at 7.5% simple interest to build a swimming pool. If she paid \$2340 in interest, find the term of the loan and the monthly payments.

Solution: Since I = Prt, We need *t* alone, and doing algebra give us:

$$\frac{I}{Pr} = t$$

So... I = \$2340 r = 0.075 P = \$5200

$$t = \frac{I}{Pr} \quad \rightarrow \quad \frac{2340}{5200(0.075)} \quad \rightarrow \quad 0$$

- The term of the loan is 6 years, which is 72 months.
- The total amount paid is the principal plus interest.

$$5200 + 2340 = 7540$$

6yrs

• Divide by 72 to find the monthly payment: $\frac{7540}{72} =$ \$104.73

Discount Loans

• Sometimes the interest on a loan is paid up front by deducting the amount of the interest the lender gives you. This is called a Discounted Loan.

Example:Katrina obtained a 2 year \$6000 loan for university. The rate was 8% simple interest
and the loan was a discounted loan.a)Find the discount
b)b)Find the amount of money Katrina received
c)c)Find the actual interest rateSolution:
a)I = Prt $\rightarrow I = 6000(0.08)(2) = 960

- b) Katrina receives: \$6000 \$960 = \$5040
- c) The actual interest rate should be calculated on \$5040 with \$960 in interest.

 $r = \frac{I}{Pt} \rightarrow \frac{960}{(5040)(2)} = 0.0952$ The actual interest rate was: **9.52**%

Compound Interest

- Compound Interest is much more complicated. You build/owe on the *Principal* + *the Interest* earned in a compounding period
 - o It can be used to your benefit when savings, but it can drown you when it's used against your debt

• Compound Interest is calculated this way: $A = P \left(1 + \frac{r}{n}\right)^{n(t)}$

- A: is the final amount earned
- *P*: is the Principal (the initial amount of money borrowed or saved)
- r: is the **Yearly** Percentage Rate, expressed as a decimal (25% = 0.25)
- *n*: is the number of times yearly interest is compounded per year
- t: is time, in years
- Compounding periods means the number times the interest is calculated in a year
 - Yearly: n = 1
 - Quarterly: n = 4
 - Monthly: n = 12
 - Daily: n = 365

Example: To have savings for university, the parents of a child invest \$25 000 in a savings plan paying 6% interst compounded quarterly. How much money will they have in 18 years?

<u>Solution</u>: $A = P\left(1 + \frac{r}{n}\right)^{n(t)}$ so we sub in for the information given to fins the solution

$$A = 25\ 000\left(1 + \frac{0.06}{4}\right)^{4(18)} \quad \rightarrow \quad A = 25\ 000(1.015)^{72} \quad \rightarrow \quad A = \$73028.95$$

• At 18 years old the child will have: \$73028.95

Example: How much would you have to invest into a 10 year bond paying 4.2% compounded weekly to make it worth \$5000 at the end of its term?

Solution: $A = P\left(1 + \frac{r}{n}\right)^{n(t)}$ so we calculated what we can then use algebra to find the unknown $5000 = P\left(1 + \frac{0.042}{52}\right)^{52(10)} \rightarrow 5000 = P(1.5217) \rightarrow P = \frac{\$5000}{(1.5217)} = \$3285.79$ P = \$3285.79 You need to invest \$3285.79

Section 6.1 – Practice Problems

Find the future value of the loan using Simple Interest

1. <i>P</i> = \$1080, <i>r</i> = 3.45%, <i>t</i> = 4.5 years	2. $P = $4250, r = 5.3\%, t = 42 months$
3. <i>P</i> = \$6625, <i>r</i> = 4.7%, <i>t</i> = 130 weeks	4. <i>P</i> = \$3360, <i>r</i> = 9.5%, <i>t</i> = 240 <i>days</i>

The following loans are discounted. For each question find: the discount, the amount of money received, and the true interest rate

5. P	P = \$6500, r = 6.5%, t = 4 years	6.	P = \$9600, r = 8.25%, t = 2 years
------	-----------------------------------	----	------------------------------------

	Principal	Rate	Compounded	Time	Future Amount	Interest
7.	\$6200	4.5%	Semi-annually	3 year		
8.	\$7500	5.3%	Quarterly	4.5 years		
9.	\$9600	8%	Monthly	1.5 years		
10	\$2500	7.5%	Weekly	6 years		
11.	\$5000	6%	Daily	3 years		

Find the future amount and interest, using the Compound Interest formula

Work Space

- 12. A new computer has a 3 year payment plan with monthly payments of \$36.80. The cost of the computer is 964.20. Find the interest rate of the computer using simple interest.
- For a set of new tires costing \$648.48 including tax, you are offered low monthly payments of \$42.60 over 18 months. Find the interest rate for the tires using simple interest.

14.	An 18 year old plans to retire at age 55. She decided to invest her inheritance of \$50 000 at 6% compounded quarterly. How much will she have at 55?	n n	The Smiths hope to accumulate \$40 000 for a new car in 5 years. How much would they need to invest right now at 5.2% compounded monthly to reach their goal?
16.	An investor deposits \$8000 into an account paying 6% compounded quarterly. Three years later he deposits \$5000 into the same account. How much money was there at the end of 5 years?	n s	Vhat percentage of Simple Interest would be beeded on a 12 year investment to have the ame future value as one that pays 6% ompounded quarterly?

Answer Key – Section 6.1

1. <i>I</i> :\$167.67 <i>FV</i> :\$1247.67	2. <i>I</i> : \$788.32 <i>FV</i> : \$5038.38
3. <i>I</i> :\$778.44 <i>FV</i> :\$7403.44	4. <i>I</i> : \$209.88 <i>FV</i> : \$3569.88
5. <i>I</i> :\$1690 <i>DL</i> :\$4810 <i>r</i> :8.78%	6. <i>I</i> : \$1584 <i>DL</i> : \$8016 <i>r</i> : 9.9%
7. <i>I</i> :\$885.52 <i>FV</i> :\$7085.52	8. <i>I</i> :\$2005.18 <i>FV</i> :\$9505.18
9. <i>I</i> :\$1219.66 <i>FV</i> :\$10 819.66	10. <i>I</i> : \$1419.51 <i>FV</i> : \$3919.51
11. <i>I</i> :\$1106.96 <i>FV</i> :\$6106.96	12. <i>r</i> :12.47%
13. <i>r</i> :12.16%	14. <i>A</i> : \$452 839.45
15. <i>P</i> : \$30 859.39	16. <i>A</i> : \$16 407.31
17. <i>r</i> :8.7%	

Pre-Calculus Math 11

Extra Work Space