Section 6.1 - Interest, Investments, and Loans

This booklet belongs to:

\qquad Block:

Investments

- Financial investing is the act of setting aside money with the hope of receiving a greater amount back in the future
- A particular way to get this back is to invest in low-risk, low interest savings
- These type of investment pay interest on the money invested, either: Simple or Compound

Simple Interest

- Interest money that is added to the PRINCIPAL (money invested or borrowed)
- It is decided based on a given percentage rate
- Low Interest Rates
- Awesome for a borrower, you pay less to the lender
- Bad if you are trying to grow interest on savings
- High Interest Rates
- Brutal/Crippling for a borrower, you pay more to the lender
- Great if it is interest earned in savings
- Simple Interest is calculated this way: $\quad \boldsymbol{I}=\boldsymbol{P r} \boldsymbol{t}$
- I: is the amount of interest calculated
- P: is the Principal (the amount of money borrowed or saved)
- $\quad r$: is the Percentage Rate, expressed as a decimal $(25 \%=0.25)$
- $\quad t$: is Time, in years

Example: \quad Find the future amount of an investment of $\$ 8000$ at simple interest for $5 y r s$ at 6%.
Solution: $\quad I=\operatorname{Prt}$

Here: $\quad P=\$ 8000 \quad t=5 \quad r=6 \%=0.06$

$$
\begin{aligned}
& I=(8000)(0.06)(5) \\
& I=2400
\end{aligned}
$$

So in 5 years without touching the money, you earn an extra $\$ 2400$, giving a new total of:

$$
8000+2400=\$ 10400
$$

Example: Yazia borrowed $\$ 5200$ at 7.5% simple interest to build a swimming pool. If she paid $\$ 2340$ in interest, find the term of the loan and the monthly payments.

Solution: Since $\boldsymbol{I}=\boldsymbol{P r} \boldsymbol{r}$, We need \boldsymbol{t} alone, and doing algebra give us:

$$
\frac{I}{P r}=t
$$

So...

$$
\begin{array}{lll}
I=\$ 2340 & r=0.075 & P=\$ 5200 \\
& t=\frac{I}{P r} \rightarrow \frac{2340}{5200(0.075)} \quad \rightarrow \quad \mathbf{6 y r s}
\end{array}
$$

- The term of the loan is 6 years, which is 72 months.
- The total amount paid is the principal plus interest.

$$
\$ 5200+\$ 2340=\$ 7540
$$

- Divide by 72 to find the monthly payment: $\frac{7540}{72}=\$ \mathbf{1 0 4 . 7 3}$

Discount Loans

- Sometimes the interest on a loan is paid up front by deducting the amount of the interest the lender gives you. This is called a Discounted Loan.

Example: Katrina obtained a 2 year $\$ 6000$ loan for university. The rate was 8% simple interest and the loan was a discounted loan.
a) Find the discount
b) Find the amount of money Katrina received
c) Find the actual interest rate

Solution:

a) The discount is the total interest of the loan: $\quad I=\operatorname{Prt} \quad \rightarrow \quad I=6000(0.08)(2)=\$ 960$
b) Katrina receives: $\quad \$ 6000-\$ 960=\$ 5040$
c) The actual interest rate should be calculated on $\$ 5040$ with $\$ 960$ in interest.

$$
r=\frac{I}{P t} \rightarrow \frac{960}{(5040)(2)}=0.0952 \quad \text { The actual interest rate was: } \quad \mathbf{9 . 5 2} \%
$$

Compound Interest

* Compound Interest is much more complicated. You build/owe on the Principal + the Interest earned in a compounding period
- It can be used to your benefit when savings, but it can drown you when it's used against your debt
- Compound Interest is calculated this way: $\quad A=P\left(1+\frac{r}{n}\right)^{n(t)}$
- A : is the final amount earned
- P : is the Principal (the initial amount of money borrowed or saved)
- $\quad r$: is the Yearly Percentage Rate, expressed as a decimal $(25 \%=0.25)$
- n : is the number of times yearly interest is compounded per year
- t : is time, in years
- Compounding periods means the number times the interest is calculated in a year
- Yearly: $n=1$
- Quarterly: $n=4$
- Monthly: $n=12$
- Daily: $n=365$

Example: To have savings for university, the parents of a child invest $\$ 25000$ in a savings plan paying 6% interst compounded quarterly. How much money will they have in 18 years?

Solution: $\quad \boldsymbol{A}=\boldsymbol{P}\left(\mathbf{1}+\frac{r}{n}\right)^{\boldsymbol{n}(\boldsymbol{t})} \quad$ so we sub in for the information given to fins the solution

$$
A=25000\left(1+\frac{0.06}{4}\right)^{4(18)} \rightarrow A=25000(1.015)^{72} \quad \rightarrow \quad A=\$ 73028.95
$$

- At 18 years old the child will have: $\$ 73028.95$

Example: How much would you have to invest into a 10 year bond paying 4.2% compounded weekly to make it worth $\$ 5000$ at the end of its term?

Solution: $\quad A=P\left(1+\frac{r}{n}\right)^{n(t)}$ so we calculated what we can then use algebra to find the unknown
$5000=P\left(1+\frac{0.042}{52}\right)^{52(10)} \quad \rightarrow \quad 5000=P(1.5217) \quad \rightarrow \quad P=\frac{\$ 5000}{(1.5217)}=\$ 3285.79$
$P=\$ 3285.79 \quad$ You need to invest $\$ 3285.79$

Section 6.1 - Practice Problems

Find the future value of the loan using Simple Interest

1. $P=\$ 1080, r=3.45 \%, t=4.5$ years	2. $P=\$ 4250, r=5.3 \%, t=42$ months
3. $P=\$ 6625, r=4.7 \%, t=130$ weeks	$4 . \quad P=\$ 3360, r=9.5 \%, t=240$ days

The following loans are discounted. For each question find: the discount, the amount of money received, and the true interest rate
5. $P=\$ 6500, r=6.5 \%, t=4$ years
6. $P=\$ 9600, r=8.25 \%, t=2$ years

Find the future amount and interest, using the Compound Interest formula

Principal	Rate	Compounded	Time	Future Amount	Interest
7. $\$ 6200$	4.5\%	Semi-annually	3 year		
8. $\$ 7500$	5.3\%	Quarterly	4.5 years		
9. $\$ 9600$	8\%	Monthly	1.5 years		
10. \$2500	7.5\%	Weekly	6 years		
11. \$5000	6\%	Daily	3 years		

Work Space

12. A new computer has a 3 year payment plan with monthly payments of $\$ 36.80$. The cost of the computer is 964.20 . Find the interest rate of the computer using simple interest.
13. For a set of new tires costing $\$ 648.48$ including tax, you are offered low monthly payments of $\$ 42.60$ over 18 months. Find the interest rate for the tires using simple interest.
14. An 18 year old plans to retire at age 55 . She decided to invest her inheritance of \$50 000 at 6% compounded quarterly. How much will she have at 55 ?
15. The Smiths hope to accumulate $\$ 40000$ for a new car in 5 years. How much would they need to invest right now at 5.2\% compounded monthly to reach their goal?
16. An investor deposits $\$ 8000$ into an account paying 6\% compounded quarterly. Three years later he deposits $\$ 5000$ into the same account. How much money was there at the end of 5 years?
17. What percentage of Simple Interest would be needed on a 12 year investment to have the same future value as one that pays 6% compounded quarterly?

Answer Key - Section 6.1

1.	$I: \$ 167.67$	$F V: \$ 1247.67$	2.	$I: \$ 788.32$	$F V: \$ 5038.38$
3.	$I: \$ 778.44$	$F V: \$ 7403.44$	4.	$I: \$ 209.88$	$F V: \$ 3569.88$
5.	$I: \$ 1690$	$D L: \$ 4810 \quad r: 8.78 \%$	6.	$I: \$ 1584$	$D L: \$ 8016$
7.	$I: \$ 885.52$	$F V: \$ 7085.52$	8.	$I: \$ 2005.18$	$F V: \$ 9505.18$
9.	$I: \$ 1219.66$	$F V: \$ 10819.66$	10.	$I: \$ 1419.51$	$F V: \$ 3919.51$
11. $I: \$ 1106.96$	$F V: \$ 6106.96$	12. $r: 12.47 \%$			
13. $r: 12.16 \%$		14. $A: \$ 452839.45$			
15. $P: \$ 30859.39$	16. $A: \$ 16407.31$				
17. $r: 8.7 \%$					

Extra Work Space

