Section 5: Probability, Statistics, and Graphs

This booklet belongs to:
Block: \qquad

Section	Due Date	How Did It Go?	Corrections Made and Understood
5.1			
5.2			
5.3			

Self-Assessment Rubric

Category	L-T Score	Learning Target Procedure	Algebraic/Arithmetic Procedure	Communication	Anecdotal Example
Extending	4	Procedural context demonstrates a detailed understanding of the learning targets	Algebraic/Arithmetic process is error free, logic is clear and easy to follow	Written output is clear, easy to follow, and shows depth of understanding	"You could teach this" or "It's an answer key"
	3.5	Procedural context demonstrates a thorough understanding of the learning targets	Algebraic/Arithmetic process contains very minor errors, logic is clear and easy to follow	Written output is clear, easy to follow, and shows depth of understanding	"Almost perfect, one or two little errors"
Proficient	3	Procedural context is clear, demonstrates sound reasoning and thought of the learning targets	Algebraic/Arithmetic process contains minor errors, logic is clear and easy to follow	Written output is clear and organized, and shows depth of understanding	"Good understanding with a few errors"
Developing	2.5	Procedural context is clear, contains errors but demonstrates sound reasoning and thought of the learning targets	Algebraic/Arithmetic process contains errors, logic is clear and easy to follow	Written output is difficult to follow, but shows an understanding of the task	"You know what to do bet not clear how to do it"
	2	Procedural context contains errors. Understanding of the learning targets is developing	Algebraic/Arithmetic process contains numerous errors, difficult to follow	Written output is difficult to follow but shows an understanding of the task	"You are on the right track but key concepts are missing"
Emerging	1	Procedural context is not clear, demonstrates minimal understanding of the learning targets	Algebraic/Arithmetic process contains numerous errors, difficult to follow	Written output is difficult to follow, but shows an understanding of the task	"You have achieved the bare minimum to meet the learning outcome"
Not Yet Meeting Outcomes	IE	Procedural context is not clear, demonstrates minimal understanding of the learning targets	Algebraic/Arithmetic process contains numerous errors, difficult to follow	Written output is difficult to follow or completely absent and lacks clarity	"Learning outcomes are not met at this time"

Learning Targets and Self-Evaluation

L-T	Description	Mark
5-1	- Di scussi on of outliers, sa mpl e vs population - Cal cu ating central tendency: Mean/Median/Mode	
5-2	- Difference between theoretical and experi mental probability - Cal culating Experi mental probability fromdata andinga mes	
5-3	- Di spl ays inf or mati on is pi ctogr aphs, i nf ographi cs etc. - Conti nuous versus d screte data's infl uence on: line/bar/ard e graph	

Comments:

Competency Evaluation

A val uald e aspect to the learning process invd ves self-refl ection and efficacy. Research has shown that authentic self-refl ecti on hel ps i mprove perf or mance and effort, and can have a drect i mpact on the gr owth nindset of the i nd vi dual. In or der to grow and be a lifeł ong l ear ner we need to devel op the capadity to monitor, eval uate, and know what and where we need tofocus on i mprovement. Read the fdl owing list of Core Competency Outcomes and reflect on your behaviour, attitude, effort, and acti ons throughout this urit.

- Rank yourself on the left of each cd um: 4 (Excell ent), 3 (Good), 2 (Sati sf act ory), 1 (Needs Improve ment)

Section 5.1 - Statistics and Central Tendency

Sample vs Population

- A population is the totality of all things under consideration
- Example: All the students in school district 61
- A sample is a selection of participants from the population
- Example: Only students at Mount Doug
- In order for a study to be free of bias, or skewed results, you need a true RANDOM SAMPLE.

Example:

If I were looking to do a survey of people in Victoria who think we need to improve the BC transit system, I need to make sure my sample is random.

- If I asked people at bus stops, will that have a bias on my results?

Absolutely! Since you are asking people at the bus stop, you can assume they ride the bus regularly and therefore have a skewed response regarding BC transit.

How do you get a Random Sample?
There are many methods:

- Open the phonebook to a random page
- Put all the people's names in a hat and draw them out
- Use a random selection computer generation program
- Statistics is the mathematical approach of gathering data
- Data is the information gathered in a study, the answers to the questions you pose
- Data is gathered by posing a question to a Sample of individuals, the question can be openended, but usually has a set of choice responses
- Remember to choose your sample randomly to limit bias in the responses

Example of Sample versus Population

Sample: $\quad 500$ people chosen at random from the Victoria phonebook
Population: The city of Victoria

Adri an Herl aar, Schod Di stri ct 61

Gathering the data is where you start, the more data you have the more reflective of a population the results may be.

- Think about if you asked: Do you prefer Pepsi of Coke and randomly selected 2 people
- Your stats would look like this:

Pepsi	Coke
100%	0%
50%	50%
0%	100%

Not really the best refl ecti on of a populati on

The more dat a you have, the accurate your pred cti ons will be.

So gather as much information as you can in order to achieve results that will be Statistically Significant

Central Tendency

- Is the Central of Typical value with respect to the distribution of the statistics
- We will look at and discuss these three:
- The MEAN - The average of the values you have collected
- The MEDIAN - The middle term of the list of data, written smallest to largest
- The MODE - The term that occurs the most in a given set of data

The Median is often used in describing data compared to the Mean in statistics because it is not skewed by outliers that are excessively high and/or low, and may give a better idea of the typical value.

Example: Calculate the Mean, Median, and Mode of the following data set.
$12,13,20,10,15,17,21,37,22,13,10,17,21,21,37$

Solution: Rewrite the info in ascending order first to find the MEDIAN AND MODE
$10,10,12,13,13,15,17,17,20,21,21,21,22,37,37$

So now we can see that the MODE is: 21 (it appears three times)
So now we can see that the MEDIAN is: 17 (7 items on either side of it)
So now we can calculate the MEAN is: 19.07 (Add all the terms up and divide by the total number)

Section 5.1 - Practice Problems

What are 3 examples of Sample vs Population.
1.
2.
3.

Using the following sets of Data, calculate the Mean, Median, and Mode
4. Ages of a Sample Group

12	14	19	12	14	15	15	16	15	18

5. Average Temperature over a 30 Day Period

24°	21°	18°	19°	12°	21°	27°	29°	19°	18°
24°	23°	17°	19°	26°	15°	19°	20°	20°	13°
19°	23°	27°	20°	21°	23°	23°	19°	27°	23°

Section 5.2 - Theoretical and Experimental Probability

- Theoretical probability is calculated by

The number of favorable outcomes
The number of possible outcomes

- Experimental Probability is calculated by

The number of times something happened
The number of times we tried

Example: To understand the difference between the two, let's look at the tossing of a coin. What is the probability of flipping heads?

Theoretical Probability: Requires a sample space diagram

H	T

Probabiltiy Flipping Heads $=\frac{\text { The number of ways we can flip Heads }}{\text { The number of ways we can flip }}$
Probabiltiy Flipping Heads $=\frac{1}{2}=0.5=50 \%$

Experimental Probability: Requires some trials:

Heads	13
Tails	7
Total	20

Probability of Flipping Heads $=\frac{\text { The number of times we flip Heads }}{\text { The number of times we flipped }}$
Probability of Flipping Heads $=\frac{13}{20}=0.65=65 \%$

Example: Now, let's look at tossing a coin twice. What is the probability of flipping at least one head?

Theoretical Probability: Requires a sample space diagram
Coin:
Second Toss

	H	T
H	H, H	H, T
T	T, H	T, T

Probabiltiy Flipping at least one Head $=\frac{\text { The number of ways we can flip at least one Heads }}{\text { The number of ways we can flip }}$
Probabiltiy Flipping Heads $=\frac{3}{4}=0.75=75 \%$

Experimental Probability: Requires some trials:

Heads, Heads	4
Heads, Tails	3
Tails, Heads	7
Tails, Tails	6
Total	20

Probability of Flipping at least on Head $=\frac{\text { The number of times we flip at least one Head }}{\text { The number of times we flipped }}$
Probability of Flipping Heads $=\frac{14}{20}=0.7=70 \%$

Example: Now let's look at rolling a die.

Theoretical Probability: Requires a sample space diagram
Die Rdl

1	2	3	4	5	6

Probabiltiy of rolling a $5=\frac{1}{6}=0.16666=16.7 \%$
Probabiltiy of rolling an even number $=\frac{3}{6}=0.5=50 \%$
Probabiltiy of rolling a 3 or $1=\frac{2}{6}=0.33333=33.3 \%$

Experimental Probability: Requires some trials:

Number on Die	Outcomes
1	4
2	5
3	8
4	1
5	3
6	4

Probabiltiy of rolling a $5=\frac{3}{25}=0.12=12 \%$
Probabiltiy of rolling an even number $=\frac{10}{25}=0.4=40 \%$
Probabiltiy of rolling a 3 or $1=\frac{12}{25}=0.48=48 \%$

Section 5.2 - Practice Problems

Using two dice. First fill in the sample space with all the possible outcomes of a roll with two dice. \quad Die \#2

	1	2	3	4	5	6
	1					
Die \#1	2					
	3					
	4					

What is the Theoretical Probability of the following:

1 Rolling any doubles:
3. Rolling sum of 4:
5. Rolling sum of 7 :
6. Rolling sum of 3 :

Using the table what is the experimental probability of the following:
7. Probability of rdling a sum of 5 :
8. Probability of rdling a sum of $\&$:
9. Probability of rdling a sum of 4:
10. Probability of rdling a su mthat is an even number:

11 Probability of rdling a sumthat is an odd number:

12 Probability of rdling a sumthat is a Pri me Number:

Sum of Dice	Frequency
2	4
3	7
4	5
5	3
6	9
7	12
8	10
9	8
10	2
11	7
12	4

Section 5.3-Graphing

- Graphing provides us with a way of visualizing DATA
- We will discuss a few here and put more focus on Bar/Line/Circle Graphs

The first three we will look at are:

Pictographs: A way of showing data using images	Favorite cookie	
	Cookie	Number of students
	Peanut butter	0000
Pi ct ogr aphs have been used si nce the begi nn ng of human divilizati on Exa mples have been	Chocolate chip	00
found as earl y as 3000BC in Egypt and	Ginger snap	0
Mesopot a mia.	Animal cracker	00
	Each	$=2$ cookies

Histograms: Similar to a Bar Graph, made up of bars of info that represent continuous data, broken into bars that represent groups of ranges

Hi st ograms, as a bar graph, is a way of showing i ff or mation that represents conti nuous dat a without havi ng to use aline graph.

Infographic: Graphic representation of information, data, knowledge etc. They play a critical role in marketing and advertising.

```
Inf ographi cs focus heavily on i mages to catch
att enti on and portray i rf ormati on d earl y, they still invd ve writteni if or mati on, but the i mages help to get the message out
```

FITNESS INFOGRAPHIC

The next three graphs we will look at in more detail.
Bar Graph: A graph of data, discrete in its topics, that represents the data using bars

- You can see the Bar's repr esent d screte dat a (dfferent concret e possi bilities)
- The graph has a title and the axis are labd ed

Example: Graph the following data as a bar graph

Solution:

\# of people	Favorite Colour
2	Red
15	Blue
10	Purple
4	Green

- This unit we will be making Bar Graphs by hand and using the Computer

Line Graph: A graph that shows data, represented continuously, which means there isn't a break in the data

- You can see the x - axis represents ti me, which can be pin-painted to any pa nt. That is what we mean by conti nuous dat a.
- If theline graph isinfact conti nuous we can interpd ate and extrapd ate for the graph

The Speed of a Car as it Accel er at es Forward

Circle Graphs: The hardest to produce by hand. The data needs to be analyzed and broken down into a percentage, then the percentage needs to be multiplied by 360 so that we have partitions of the 360° circle. We start with an arbitrary radius and measure the corresponding angles from there.

Example: Given the following information, make a circle graph to display it.

\# of People	15	10	4	2	7
Pets	Dog	Cat	Bird	Lizard	Other

Solution:

Total Number of Peopl e Surveyed: 38
Need a percentage of 360°
Dog: $\quad \frac{15}{38}=0.395=40 \% \rightarrow 0.395 * 360=142^{\circ}$
Cat: $\quad \frac{10}{38}=0.263=26 \% \rightarrow 0.263 * 360=95^{\circ}$
Bird $\quad \frac{4}{38}=0.105=11 \% \rightarrow 0.105 * 360=38^{\circ}$
Lizard: $\frac{2}{38}=0.053=5 \% \rightarrow 0.053 * 360=19^{\circ}$
Other: $\frac{7}{38}=0.184=18 \% \rightarrow 0.184 * 360=66^{\circ}$

Section 5.3 - Practice Problems

The following can and should be made of separate pieces of paper.

1. Create a Pictograph of your choice
2. Create an Infographic of your choice
3. Using the following data create both a Bar Graph and Circle Graph by hand

Students were asked what their favorite course was in school. The answers were as follows.

Math	Physics	Science	AutoBody	Band	Woodwork	Criminology
6	4	8	10	7	3	5

Answer Key

Section 5.1

1. Answer will Vary
2. Answer will Vary
3. Answer will Vary
4. Mean: 15

Median: 15
Mode: 15
5. Mean: 21°

Median: 20.5°
Mode: 19°

Section 5.2

1. $\frac{1}{6}$
2. $\frac{5}{36}$
3. $\frac{1}{12}$
4. $\frac{1}{36}$
5. $\frac{1}{6}$
6. $\frac{1}{18}$
7. $\frac{3}{71}$
8. $\frac{10}{71}$
9. $\frac{5}{71}$
10. $\frac{34}{71}$
11. $\frac{37}{71}$
12. $\frac{33}{71}$

Section 5.3
See Website Copy

