Section 5.5 – Applications of Exponentials and Logarithms

- We look now at solving scenarios where we need exponentials and logarithms
- We have already been introduced to two types of questions that involve exponentials:

Compound Interest

Compound Interest is calculated this way:

$$A = P\left(1 + \frac{r}{n}\right)^{n(t)}$$

- A: is the final amount earned
- *P*: is the Principal (the initial amount of money borrowed or saved)
- r: is the **Yearly** Percentage Rate, expressed as a decimal (25% = 0.25)
- *n*: is the number of times yearly interest is compounded per year
- t: is time, in years

But we have a new scenario:

 $A = Pe^{rt}$

- A: is the final amount earned
- P: is the Principal (the initial amount of money borrowed or saved)
- r: is the **Yearly** Percentage Rate, expressed as a decimal (25% = 0.25)
- t: is time, in years

Growth/Decay

$A = A_0(x)^{\frac{t}{T}}$	$A = A_0(e)^{kt}$
<i>A</i> – Final Amount	<i>A</i> – Final Amount
A_0 – Initial Amount	A_0 – Initial Amount
x – Growth or Decay Value	e – Mathematical Constant ≈ 2.71828
Examples:	k – Proportional Constant
Half-Life: $x = 1/2$	<i>t</i> - time
Increase by 10%: $x = 1.1$	
Decrease by 10%: $x = 0.9$	
t – Total time that item remains	
T – Time of Growth or Decay	

What we have now though, are tools at our disposal to solve for the exponent

- **Example 1:** Vince is considering investing his money. He has \$5000 to invest and his broker his giving him two options.
- Option 1: 10% interest compounded monthly
- Option 2: 10% interest Compounded Continuously
- Is there a difference in his choices if he wants to know how long it takes to save \$30 000?

Solution 1:

Option 1

$$A = P \left(1 + \frac{r}{n}\right)^{n(t)}$$

$$30000 = 5000 \left(1 + \frac{0.10}{12}\right)^{12t}$$

$$6 = 1 \left(1 + \frac{0.10}{12}\right)^{12t}$$

$$\log 6 = \log \left(1 + \frac{0.10}{12}\right)^{12t}$$

$$\log 6 = (12t) \log \left(1 + \frac{0.10}{12}\right)$$

$$12t = \frac{\log 6}{\log \left(1 + \frac{0.10}{12}\right)}$$

$$t = \frac{1}{12} \cdot \frac{\log 6}{\log \left(1 + \frac{0.10}{12}\right)}$$

$$t = 17.99 \ years$$
The optimized in the set of the set

Option 2

 $A = Pe^{rt}$ $30\ 000 = 5000e^{0.1t}$ $6 = e^{0.1t}$ $\log_e 6 = \log_e e^{0.1t}$ $\ln 6 = 0.10t$ $t = \frac{\ln 6}{0.10}$ $t = 17.92 \ years$

The options are essentially the same! Take either one Vince.

- **Example 2:** If the half-life of Valeriium-23 is 13 years. How long does it take for 80% of a 5 gram sample to decay?
- **Solution 2:** 80% of 5g is $5 \cdot 0.8 = 1g$

We can use either Method for Decay, but remember, we need to solve for k first in the second equation.

$A = A_0(x)^{\frac{t}{T}}$	$A = A_0(e)^{kt}$
$(1)\frac{t}{13}$	$2.5 = 5(e)^{k13}$
$1 = 5\left(\frac{1}{2}\right)^{\frac{t}{13}}$	$0.5 = e^{13k}$
. <u>t</u>	$\ln 0.5 = 13k$
$\frac{1}{5} = \left(\frac{1}{2}\right)^{\frac{l}{13}}$	$k = \frac{\ln 0.5}{13}$
$\log_{\frac{1}{2}}\left(\frac{1}{5}\right) = \frac{t}{13}$	So
$\log 0.2$ t	$1 = 5(e)^{\frac{\ln 0.5}{13}t}$
$\frac{\log 0.2}{\log 0.5} = \frac{t}{13}$	$0.2 = (e)^{\frac{\ln 0.5}{13}t}$
$t = 13 \cdot \frac{\log 0.2}{\log 0.5}$	$\ln 0.2 = \frac{\ln 0.5}{13}t$
<i>t</i> = 30.2 <i>years</i>	$t = \frac{13\ln 0.2}{\ln 0.5} = 30.2 \ years$

These questions can be challenging, particularly the Growth/Decay questions. Try your best and work through as best you can. Almost always, you will be solving for the exponent, so keep that in mind.

Section 5.5 – Practice Problems

1.	On average, a car depreciates 15% in value each year. How long does it take for a new car worth \$40 000 to depreciate to \$10 000?	2.	If you invest \$10 000, how long does it take to become a millionaire (\$1 000 000) if you invest in an account at 12% compounded: a) quarterly b) continuously
3.	What interest rate is needed if money is to triple in 15 years if the interest is compounded: a) semi-annually b) continuously	4.	It is estimated that 20% of Herlonium decays in 30 hours. What is the half-life of the substance?

Pre-Calculus 12

5.	 The pH scale measures the acidity (0 – 7) or alkalinity (7 – 14) of a solution with 7 being neutral water. It is a logarithmic scale in base 10. A pH of 9 is 10 times more alkaline than a pH of 8, and a pH of 5 is 10 times more acidic than a pH of 6. a) If lemon juice has a pH of 2.1, how many times more acidic is it than black coffee, with a pH of 4.8? b) If tomato juice has a pH of 4.2 and is 75 times more acidic than milk. What is the pH of the milk? 	6.	If Vancouver has a population of 400 000 and is growing at a rate of 2% annually, and Surry has a population of 300 000 and is growing at a rate of 3% annually, in how many years will Surrey catch up to Vancouver in population?
7.	Find the time needed for money to triple at 8% compounded: a) Daily b) continuously	8.	The amount of a chemical in grams that will dissolve in a solution is given by $C = 8e^{0.3t}$ where t is the temperature in Celsius of the solution. Find t when C = 100 grams

9.	The population if Toronto is given by $P(t) = 4\ 000\ 000e^{0.012t}$, where $t = 0$ corresponds to year 2000. What year will the population reach 6 400 000?	10. A biologist studying bacteria determines that a certain culture grows exponentially, such that the colony doubles every 4 days. If the initial colony had 1200 bacteria, how long did it take to have 100 000 bacteria?	
11.	11. The half-life of Lukatium is 5570 years. If		

11. The half-life of Lukatium is 5570 years. If 500 milligrams are present today, how much is present after 2500 years?

See Website for Detailed Answer Key

Extra Work Space