Section 5.5 - Applications of Exponentials and Logarithms

- We look now at solving scenarios where we need exponentials and logarithms
- We have already been introduced to two types of questions that involve exponentials:

Compound Interest

Compound Interest is calculated this way: $\quad A=P\left(1+\frac{r}{n}\right)^{n(t)}$

- A: is the final amount earned
- $\quad P$: is the Principal (the initial amount of money borrowed or saved)
- r : is the Yearly Percentage Rate, expressed as a decimal $(25 \%=0.25)$
- n : is the number of times yearly interest is compounded per year
- t : is time, in years

But we have a new scenario: $\quad \boldsymbol{A}=\boldsymbol{P} \boldsymbol{e}^{r \boldsymbol{t}}$

- A: is the final amount earned
- $P:$ is the Principal (the initial amount of money borrowed or saved)
- r : is the Yearly Percentage Rate, expressed as a decimal $(25 \%=0.25)$
- t : is time, in years

Growth/Decay

$A=A_{0}(x)^{\frac{t}{T}}$	$A=A_{0}(e)^{k t}$
A - Final Amount	A - Final Amount
A_{0} - Initial Amount	A_{0} - Initial Amount
x - Growth or Decay Value	$e-$ Mathematical Constant ≈ 2.71828
Examples:	k - Proportional Constant
\quadHalf-Life: $x=1 / 2$ \quad Increase by $10 \%: x=1.1$ Decrease by $10 \%: x=0.9$	t - time
$t-$ Total time that item remains	
T - Time of Growth or Decay	

What we have now though, are tools at our disposal to solve for the exponent

Example 1: Vince is considering investing his money. He has $\$ 5000$ to invest and his broker his giving him two options.

Option 1: 10% interest compounded monthly
Option 2: 10% interest Compounded Continuously
Is there a difference in his choices if he wants to know how long it takes to save $\$ 30000$?

Solution 1:

Option 1

$$
\begin{aligned}
& A=P\left(1+\frac{r}{n}\right)^{n(t)} \\
& 30000=5000\left(1+\frac{0.10}{12}\right)^{12 t} \\
& 6=1\left(1+\frac{0.10}{12}\right)^{12 t} \\
& \log 6=\log \left(1+\frac{0.10}{12}\right)^{12 t} \\
& \log 6=(12 t) \log \left(1+\frac{0.10}{12}\right) \\
& 12 t=\frac{\log 6}{\log \left(1+\frac{0.10}{12}\right)} \\
& t=\frac{1}{12} \cdot \frac{\log 6}{\log \left(1+\frac{0.10}{12}\right)} \\
& t=17.99 \text { years }
\end{aligned}
$$

Option 2

$$
\begin{aligned}
& A=P e^{r t} \\
& 30000=5000 e^{0.1 t} \\
& 6=e^{0.1 t} \\
& \log _{e} 6=\log _{e} e^{0.1 t} \\
& \ln 6=0.10 t \\
& t=\frac{\ln 6}{0.10} \\
& t=17.92 \text { years }
\end{aligned}
$$ either one Vince.

Example 2: If the half-life of Valeriium-23 is 13 years. How long does it take for 80% of a 5 gram sample to decay?

Solution 2: $\quad 80 \%$ of $5 g$ is $5 \cdot 0.8=1 g$
We can use either Method for Decay, but remember, we need to solve for k first in the second equation.

$$
\begin{array}{c|c}
A=A_{0}(x)^{\frac{t}{T}} & A=A_{0}(e)^{k t} \\
1=5\left(\frac{1}{2}\right)^{\frac{t}{13}} & 2.5=5(e)^{k 13} \\
\frac{1}{5}=\left(\frac{1}{2}\right)^{\frac{t}{13}} & 0.5=e^{13 k} \\
\log _{\frac{1}{2}}\left(\frac{1}{5}\right)=\frac{t}{13} \\
\ln 0.5=13 k \\
\frac{\log 0.2}{\log 0.5}=\frac{t}{13} \\
t=13 \cdot \frac{\log 0.2}{\log 0.5} \\
t=30.2 \text { years } \\
\text { So... } & k=\frac{\ln 0.5}{13} \\
& 1=5(e)^{\frac{\ln 0.5}{13} t} \\
& 0.2=(e)^{\frac{\ln 0.5}{13} t} \\
& t=\frac{13 \ln 0.2}{\ln 0.5}=30.2 \text { years }
\end{array}
$$

These questions can be challenging, particularly the Growth/Decay questions. Try your best and work through as best you can. Almost always, you will be solving for the exponent, so keep that in mind.

Section 5.5 - Practice Problems

1. On average, a car depreciates 15% in value each year. How long does it take for a new car worth $\$ 40000$ to depreciate to \$10 000?
2. If you invest $\$ 10000$, how long does it take to become a millionaire (\$1000 000) if you invest in an account at 12\% compounded:
a) quarterly b) continuously
3. What interest rate is needed if money is to triple in 15 years if the interest is compounded:
a) semi-annually b) continuously
4. It is estimated that 20% of Herlonium decays in 30 hours. What is the half-life of the substance?
5. The pH scale measures the acidity $(0-7)$ or alkalinity ($7-14$) of a solution with 7 being neutral water. It is a logarithmic scale in base 10. A pH of 9 is 10 times more alkaline than a pH of 8 , and a pH of 5 is 10 times more acidic than a pH of 6 .
a) If lemon juice has a pH of 2.1 , how many times more acidic is it than black coffee, with a pH of 4.8 ?
b) If tomato juice has a pH of 4.2 and is 75 times more acidic than milk. What is the pH of the milk?
6. Find the time needed for money to triple at 8% compounded:
a) Daily
b) continuously
7. If Vancouver has a population of 400000 and is growing at a rate of 2% annually, and Surry has a population of 300000 and is growing at a rate of 3\% annually, in how many years will Surrey catch up to Vancouver in population?
8. The amount of a chemical in grams that will dissolve in a solution is given by $C=8 e^{0.3 t}$ where t is the temperature in Celsius of the solution. Find t when $C=100 \mathrm{grams}$
9. The population if Toronto is given by $P(t)=4000000 e^{0.012 t}$, where $t=0$ corresponds to year 2000. What year will the population reach 6400000 ?
10. A biologist studying bacteria determines that a certain culture grows exponentially, such that the colony doubles every 4 days. If the initial colony had 1200 bacteria, how long did it take to have 100000 bacteria?
11. The half-life of Lukatium is 5570 years. If 500 milligrams are present today, how much is present after 2500 years?

Extra Work Space

