Section 5.4 – Exponential and Logarithmic Relationship

- Using the **exponential and logarithmic relationship** allows use to **solve for variables** when **they are exponents**
- Essentially, we need to isolate the variable, like we do in other algebra questions
- But in this case, the variable may be trapped in the exponent or in the logarithm
- Converting from one form to the other allows us to access and isolate it!
- Recall that in $\log_a x$, x > 0, a > 0 and $a \neq 1$. Anything that does not follow those rules, becomes an extraneous solution!

Example 1: Solve for the unknown

a)
$$3^x = 81$$
 b) $2^x = 27$

Solution 1:

$3^x = 81$		$2^x = 27$
$\log 3^x = \log 81$	If $a = b$ then $\log a = \log b$	$\log 2^x = \log 27$
$x\log 3 = \log 81$	Power Rule	$x\log 2 = \log 27$
$x = \frac{\log 81}{\log 3}$	Division	$x = \frac{\log 27}{\log 2}$
$x = \frac{\log 3^4}{\log 3}$	Exponential	$x = \frac{\log 3^3}{\log 2}$
$x = \frac{4\log 3}{\log 3}$	Power Rule	$x = \frac{3\log 3}{\log 2} = \frac{3(0.4771)}{0.3010}$
x = 4	Division	x = 4.75

Example 2: Solve for the unknown in: $\log(x - 3) + \log x = 1$

Solution 2:

$$\log(x-3) + \log x = 1 \qquad \rightarrow \qquad \log x(x-3) = 1 \qquad \rightarrow \qquad x(x-3) = 10^{1}$$
$$x^{2} - 3x - 10 = 0 \qquad \rightarrow \qquad (x-5)(x+2) = 0 \qquad \rightarrow \qquad x = 5, -2$$

Reject x = -2 since log x cannot have a negative object. Therefore, the solution is: x = 5

Example 3:	Solve for <i>x</i> : $\log_3(x + 12) - \log_3(x - 12) -$	$(+2) = \log_3 x$
Solution 3:	$\log_3(x+12) - \log_3(x+2) = \log_3 x$	
	$\log_3(x+12) = \log_3 x + \log_3(x+2)$	Rearrange the Equation
	$\log_3(x + 12) = \log_3 x(x + 2)$	Product Rule
	(x+12) = x(x+2)	$x = y$ if $\log_a x = \log_a y$
	$(x+12) = x^2 + 2x$	Waterbomb (Distribute)
	$x^2 + 2x - x - 12 = 0$	Isolate the Quadratic
	$x^2 + x - 12 = 0$	Factor
	(x+4)(x-3)=0	Solve
	x = -4, 3	
Reject $x = -$	-4 since log x cannot have a negative c	bject . Therefore, the solution is: $x = 3$

Example 4:Solve for
$$x$$
: $2 \log_3 x + \log_3 (x - 1) = 1 + \log_3 2x$ Solution 4: $2 \log_3 x + \log_3 (x - 1) = 1 + \log_3 2x$ Power Rule $\log_3 x^2 + \log_3 (x - 1) = 1 + \log_3 2x$ Power Rule $\log_3 x^2 + \log_3 (x - 1) - \log_3 2x = 1$ Rearrange the Equation $\log_3 \frac{x^2(x - 1)}{2x} = 1$ Product and Quotient Rule $\log_3 \frac{x(x - 1)}{2} = 1$ Cancel Common Factors $\frac{x(x - 1)}{2} = 3^1$ Convert from Log to Exp $x(x - 1) = 6 \rightarrow x^2 - x - 6 = 0$ Factor $(x + 2)(x - 3) = 0$ Solve

Reject x = -2 since $\log x$ cannot have a negative object. Therefore, the solution is: x = 3

Example 5:	Solve for <i>x</i> : $x^{\log x} = 100x$	
Solution 5:	$x^{\log x} = 100x$	
	$\log_x 100x = \log x$	Convert to Log Form
	$\frac{\log 100x}{\log x} = \log x$	
	$\log x$	Change of Base
	$\log 100x = (\log x)^2$	Multiply the Denominator
	$\log 100 + \log x = (\log x)^2$	
	$(\log x)^2 - \log x - \log 10^2 = 0$	Product Rule
	$(\log x)^2 - \log x - 2 = 0$	Rearrange and Base 10 Rule
	$(\log x - 2)(\log x + 1) = 0$	Write as a Quadratic
		Factor
	$\log x = -1 or \log x = 2$	
	$x = 10^{-1}, 10^2$	Solve by converting to exponent form
Check both S	Solutions: $x = 0.1$ and $x = 100$	both works. Solution is: $x = 0.1, 100$

Example 6: Solve for x: $3 \cdot 2^{x-2} = 6^x$ **Solution 6:** $3 \cdot 2^{x-2} = 6^x$ $\log(3 \cdot 2^{x-2}) = \log 6^x$ $\log 3 + \log 2^{x-2} = \log 6^x$ $\log 3 + (x-2)\log 2 = x \log 6$ $\log 3 + x \log 2 - 2\log 2 = x \log 6$ $x \log 2 - x \log 6 = 2\log 2 - \log 3$ $x \log 2 - x \log 6 = \log 2^2 - \log 3$ $x = \frac{\log 4 - \log 3}{\log 2 - \log 6}$ $x = \frac{\log \frac{4}{3}}{\log \frac{1}{3}} \rightarrow x = \frac{\log \frac{4}{3}}{-\log 3}$ **Example 7:** Solve for A in terms of B and C: $5 \log A - 2\log B = C$ **Solution 7:** $5 \log A - 2\log B = C \rightarrow \log A^5 - \log B^2 = C$ $\log \frac{A^5}{B^2} = C$ $10^c = \frac{A^5}{B^2}$ $10^c \cdot B^2 = A^5$ $\sqrt[5]{10^c \cdot B^2} = \sqrt[5]{A^5}$ $A = \sqrt[5]{10^c \cdot B^2}$

Example 8:	If $\log 3 = a$ and $\log 8 = b$, determine $\log 18$ in terms of a and b.
Solution 8:	
	$\log 18 = \log 9 \cdot 2$
	$\log 18 = \log 9 + \log 2$
	$\log 18 = \log 3^2 + \log 8^{\frac{1}{3}}$
	$\log 18 = 2\log 3 + \frac{1}{3}\log 8$
	$\log 18 = 2a + \frac{1}{3}b$

Section 5.4 – Practice Problems

1. Solve for the unknown value. Check for extraneous roots.

a) $\log_5(2x-1) + \log_5(x-2) = 1$	b) $\log_2(2-2x) + \log_2(1-x) = 5$
1	d) $\log_2(3x+1) + \log_2(x-1) = \log_2(10x+14)$
c) $\frac{1}{2} - \log_{16}(x - 3) = \log_{16} x$	$u_{1} = \log_{2}(3x + 1) + \log_{2}(x - 1) = \log_{2}(10x + 14)$
Adrian Herlaar, School District 61	5 www.mrberlaar.weebly.com

e)
$$\log_4(3x^2 - 5x - 2) - \log_4(x - 2) = 1$$
 f) $\log x + \log(29 - x) = 2$
g) $\log_{25}(x - 1) + \log_{25}(x + 3) = \log_7 \sqrt{7}$ h) $2\log(4 - x) - \log 3 = \log(10 - x)$

i)
$$2\log_2(x+2) - \log_2(3x-2) = 2$$

j) $2\log_4 x + \log_4(x-2) - \log_4 2x = 1$

2. Express in the terms stated in each question

a)	If $\log x = a$ and $\log y = b$, what is $\log \frac{x^3}{y^2}$ in terms of a and b	b)	If $a = \log_2 3$, find $\log_{16} 81$ in terms of a
c)	If $\log 3 = a$ and $\log 25 = b$ determine an expression for $\log \frac{9}{5}$ in terms of a and b	d)	If $a = \log 2$ and $b = \log 3$, what is $\log \frac{25}{9}$ in terms of a and b

- e) If $\log A = 2$ and $\log B = 3$, what is:
 - i) $\log A/B^2$ ii) $(\log AB)^2$

f)	If $\log 2 = a$ and $\log 3 = b$, what is $\log_5 12$ in terms of a and b	g)	If $\log AB = 8$ and $\log B = -4$ then what value does $\log A$ equal
h)	If $\log 3 = x$, $\log 5 = y$, and $\log 7 = z$, then find $\log_2 \sqrt[3]{12.6}$ in terms of x, y, z	i)	If $\log_8 3 = a$ and $\log_3 5 = b$, find $\log 5$ in terms of a and b

3. Solve the following

a) Solve for <i>B</i>	b) Solve for A
$A = \log 3B - \log C$	$1 + \log(AB) = \log C$
c) Solve for <i>A</i>	d) Solve for <i>x</i>
$3\log A + \log B = \log C$	$\log A = \log B - C \log x$

4. Solve for *x* but in terms of logarithmic functions

a) $2^{3x} = 5^{x-1}$	b) $7^{2x-1} = 17^x$
c) $3^{x-1} = 9 \cdot 10^x$	d) $7^{x-1} = 2 \cdot 5^{1-2x}$

5.	Solve	for	the	unknown

a) $\log_2(\log_8 x) = -1$	b) $\log_2(\log_x(\log_3 27)) = -1$
$\left(\log \left(\log x\right)\right) = 1$	
c) $\log_{\frac{1}{2}}(\log_4(\log_2 x)) = 1$	d) $\log x = \frac{2}{3}\log 27 + 2\log 2 - \log 3$
c) $\log_{\frac{1}{2}}(\log_4(\log_2 x)) = 1$	d) $\log x = \frac{1}{3}\log 27 + 2\log 2 - \log 3$
c) $\log_{\frac{1}{2}}(\log_4(\log_2 x)) = 1$	d) $\log x = \frac{1}{3}\log 27 + 2\log 2 - \log 3$
c) $\log_{\frac{1}{2}}(\log_4(\log_2 x)) = 1$	d) $\log x = \frac{1}{3}\log 27 + 2\log 2 - \log 3$
c) $\log_{\frac{1}{2}}(\log_4(\log_2 x)) = 1$	d) $\log x = \frac{1}{3}\log 27 + 2\log 2 - \log 3$
c) $\log_{\frac{1}{2}}(\log_4(\log_2 x)) = 1$	d) $\log x = \frac{1}{3}\log 27 + 2\log 2 - \log 3$
c) $\log_{\frac{1}{2}}(\log_4(\log_2 x)) = 1$	d) $\log x = \frac{1}{3}\log 27 + 2\log 2 - \log 3$
c) $\log_{\frac{1}{2}}(\log_4(\log_2 x)) = 1$	d) $\log x = \frac{1}{3}\log 27 + 2\log 2 - \log 3$

e)
$$\log x = \log 2 + 3 \log_{\sqrt{10}} y - \log 2z$$

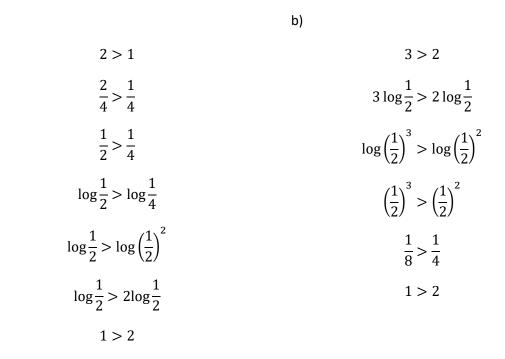
f) $2\log x = -\log a + \log b + 4\log \frac{1}{c}$

6. Determine an equation for the following in terms of logarithmic functions

a)
$$x = \frac{a^2}{b^3 \cdot c^{\frac{1}{2}}}$$

b)
$$x = \frac{a^{-2}b^3}{c^{-\frac{1}{2}}}$$

c)
$$x = \frac{\sqrt[3]{a^2} \cdot b^{-\frac{2}{5}}}{c^{\frac{1}{2}}}$$
 d) $x = \frac{\sqrt{a^5} \cdot b^{-\frac{1}{3}}}{c^{3} \cdot d^{-\frac{2}{3}}}$


- 7. Solve of the unknown value *x*
- a) $\log_2 16^{2x+1} = 8$

b) $\log_{16} x + \log_4 x + \log_2 x = 7$

c) $\log_9 x + 3 \log_3 x = 7$	d) $2\log_4 x - 3\log_x 4 = 5$
e) $(\log_4 a)(\log_a 2a)(\log_{2a} x) = \log_a a^3$	f) $\sqrt{\log x} = \log \sqrt{x}$

a)

8. Find the error in the statements written below

See Website for Detailed Answer Key

Extra Work Space