Section 5.3 – Graphing Linear Inequalities in Two Variables

This Booklet Belongs to: Block:

- The solution of a linear inequality is a section of the coordinate plane that takes up half of it
- We have to graph the inequality like we would a regular linear equation
- Then when we replace the inequality sign we can determine what side of the line to shade

Graphing a Linear Inequality – The EASY way

<u>Step 1:</u> Graph the linear inequality equation. Use a solid line for $\leq or \geq$, and a dashed line for < or >

<u>Step 2:</u> We can use either of the equation we have learned to graph the inequality

Method 1: $(Ax + By \le C \text{ or } Ax + By > C)$

Choose a test point **not** on the line and substitute the point into the equation. If the inequality stays true, shade the region including that point. If not true, shade the other region

Method 2: $(y < mx + b \text{ or } y \ge mx + b)$

Look at the inequality equation; if *y* is greater than or equal too, graph the upper half of the grid, if *y* is less than, graph the lower half.

$2x - 3y \le 6 \text{ or } y \ge \frac{2}{3}x - 2$ Example 1: 10 Solution 1: Graph the linear equation 2x - 3y = 6. Step 1: 5 Since the inequality \leq includes 'equals', use a solid line -10 -5 0 10 Step 2: Method 1: Test point (0, 0) .5 $2x - 3y \le 6$ $2(0) - 3(0) \le 6$ $0 \le 6$ True Statement So, SHADE IN the region with (0, 0) Equation $y \ge \frac{2}{3}x - 2$ is \ge , So, shade upper half Method 2:

Adrian Herlaar, School District 61

Solve Systems of Linear Inequalities

- Steps to follow here are the same as one linear inequality
- The only difference: the solution must be the intersection of all the inequality equations
- This is the region where **all points are satisfied** at the same time

Example 1:

Solution 1:

Solve:

:	2x - y > 3	2x-y	r = 3	x + y = 3		
	$x + y \ge 3$	x	У	x	у	
		0	-3	0	3	
		1.5	0	3	0	
		3	3	-2	5	

> has a dashed line

 \geq has a solid line

Test Point (0,0) from region A	Test Point (2, 4) from region B			
2x - y > 3 NO	2x - y > 3 NO			
$x + y \ge 3$ NO	$x + y \ge 3$ YES			
Test Point (5, 1) from	Test Point $(2, -3)$ from			
region C	region D			
2x - y > 3 YES	2x - y > 3 YES			
$x + y \ge 3$ YES	$x + y \ge 3$ NO			

Graph both lines, then test points

• The only region with a test point that satisfies both inequalities is:

REGION C (SHADE IT IN)

Pre-Calculus 11

Example 2:

Solve:	$3x + 2y \le 6$	3x + 2y	v = 6	x - 2y = 4	
	x - 2y > 4	x	у	x	у
		0	3	0	-2
		2	0	4	0
		4	-3	-4	-4

 \leq has a solid line

> has a dashed line

Solution 2:

Test Point $(0, 0)$ from	Test Point (2, 4) from		
region A	region B		
$3x + 2y \le 6$ YES	$3x + 2y \le 6$ NO		
x - 2y > 4 NO	x - 2y > 4 NO		
Test Point $(5, -1)$ from	Test Point $(2, -3)$ from		
region C	region D		
$3x + 2y \le 6$ NO	$3x + 2y \le 6$ YES		
x - 2y > 4 YES	x - 2y > 4 YES		

- The only region with a test point that satisfies ٠ both inequalities is: **REGION D (SHADE IT IN)**
- The algebra and elimination steps were not included in the notes ٠
- With the test point, remember to plug into the equation for the given (x, y)

Example 3:

Graph the system of linear inequalities:

Solution 3:

- For $x \ge 3$ graph solid line x = 3, then shade to right •
- For y > -4 graph line y = -4 then shade up
- •
- For y > 2x 4 graph a dashed line y = 2x 4, then shade up For $x + 6y \le 15$ graph a solid line $y \le -\frac{1}{6}x + \frac{5}{2}$, then shade down

www.mrherlaar.weebly.com

Example 4: Write a system of linear inequalities that has the given graph

Solution 4:

Points of Intersect are: A(-2, 4), B(-2, -4), and C(4, -2)

Equation of the vertical line is: $x \ge -2$

Equation of dashed line BC has slope:

$$m = \frac{-2-(-4)}{4-(-2)} = \frac{2}{6} = \frac{1}{3}, \qquad y = mx + b,$$

Using C (4, -2) $\rightarrow -2 = \frac{1}{3}(4) + b \rightarrow b = -\frac{10}{3} \rightarrow y > \frac{1}{3}x - \frac{10}{3}$

Equation of dashed line AC has slope:

$$m = \frac{4 - (-2)}{-2 - 4} = \frac{6}{-6} = -1, \quad y - intercept \text{ is } (0, 2) \rightarrow y \le -x + 2$$

Section 5.3 – Practice Questions

Graph the following inequalities on the grid provided.

1. $3x + y \ge 6$			10		
	-10	-5	0	5	10
			-5		
			-10		
2. $2x - y < 4$			10		
			-5		
	-10	-5		5	10
			-5-		
2			-10		
3. $0.4x - \frac{2}{3}y > 2$					
			-5		
	-10	-5	0	5	10
			-5		

Adrian Herlaar, School District 61

www.mrherlaar.weebly.com

4.
$$\frac{1}{3}x + \frac{2}{3}y \ge 2$$

 5. $y \ge \frac{1}{2}x + 3$

 6. $y < -\frac{4}{3}x + 2$

 7. $y = \frac{1}{3}x + 2$

7. $y = \frac{1}{3}x + 2$

Pre-Calculus 11

Graph the following inequalities on the grid provided and shade in the solution.

9. $y \ge x$ 2y < -x + 2

10. $\begin{aligned} x + 2y &> 4\\ 3x - 2y &\le 6 \end{aligned}$			10		
			-5		
	-10	-5	0	5	10
			-5		
			-10		
11. $\begin{aligned} x + y &\leq 2\\ x + y &\geq -2 \end{aligned}$			10		
			5		
	-10	-5	0	5	10
			-5		
			-10		
12. $y \le x + 1$ $y \ge -x + 1$			10		
	-10	-5	0	5	10
			-5-		
			-10		

13. $4x + 5y < 20$ $2x - y \le 4$ $x \ge 0$ $y \ge 0$	
	-10 -5 0 5 10
	-10
14. $\begin{aligned} x - y &\leq 1 \\ x - y &\geq -3 \\ -1 &\leq x \leq 3 \end{aligned}$	
	5
	-10 -5 0 5 10
	-10
15. $\begin{aligned} x - y &\leq 2\\ x + 2y &\leq 4 \end{aligned}$	
$x \leq -1$	
	-10 -5 0 5 10
	10

16. $x + y \le 4$ $2x - y \ge 2$ $x \ge 0$ $y \ge 0$

Write a system of linear inequalities that forms the given graph

Answer	Key	/ – Se	ction	5.3
--------	-----	--------	-------	-----

1. See Website	2. See Website
3. See Website	4. See Website
5. See Website	6. See Website
7. See Website	8. See Website
9. See Website	10. See Website
11. See Website	12. See Website
13. See Website	14. See Website
15. See Website	16. See Website
17.	18.
$y \leq 3$	$y \le x + 2$
$y \ge 2x - 3$	$y \ge 0$
$y \ge -x$	$y \leq -x + 4$
19.	20.
$y \le x$	$y \leq -x + 3$
$x \leq 4$	$y \ge x + 1$
$-2 \le y \le 2$	$y \ge 0$
21.	22.
$0 \le y \le 5$	$y \leq 5$
$y \ge -x + 2$	$y \ge -x - 2$
$0 \le x \le 5$	y > -r + -
	$y = 4^{2} + 2$
	$-5 \le x \le 2$
22	
23.	24.
$y \le -\frac{1}{2}x + 3$	$y \leq -\frac{1}{2}x + 2$
$\frac{2}{\sqrt{2}}$	$\frac{3}{3}$
$y \ge -2x + 0$	$y \ge -2x + 4$ $y \ge 0$
y ≥ 0	y ≥ 0
1	

Extra Work Space