Section 5.2 - Solving Systems of Non-Linear Equations Algebraically

This booklet belongs to: \qquad Block:

- When solving system of non-linear equations, we can similar strategies as linear
- The most straightforward way of doing this is to use the concept of equality

$$
\text { If } a=b \quad \text { and } \quad a=c \quad \text { then } \quad b=c
$$

- We can use this concept to simplify the systems of equations by:
- Writing both equations in terms of one variable
- Setting them equal to one another
- Solving for the given variable
- Substituting back into the equation to solve for the remaining variable
- Check our solution

Example 1: Solve the system: $\quad y=x^{2}-3 x-4$ and $2 x-y=4$
Solution 1: \quad Since one is already in terms of y, rearrange the other to also be in terms of y

$$
2 x-y=4 \quad \rightarrow \quad y=2 x-4
$$

- Now since they are both equal to y we can set them equal to each other and solve for x
$y=x^{2}-3 x-4$ and $y=2 x-4 \quad$ (Since they both equal y, set them equal to each other)
Solve for x first:
$2 x-4=x^{2}-3 x-4 \rightarrow x^{2}-5 x=0$
$x^{2}-5 x=0 \quad \rightarrow \quad x(x-5)=0$
$x=0 \quad$ or $\quad x=5$
Now solve for y
$y=2 x-4 \quad y=2 x-4$
$y=2(0)-4 \quad y=2(5)-4$
$y=-4 \quad y=6$

Check:

$$
\begin{array}{ll}
y=x^{2}-3 x-4 & y=x^{2} \\
-4=(0)^{2}-3(0)-4 & 6=(5 \\
-4=-4 & 6=6
\end{array}
$$

Example 2: \quad Solve the system: $\quad y=-\frac{1}{2} x^{2}+2 x-3 \quad$ and $\quad y=x-2$
Solution 2: \quad Since they are both already in terms of y, set them equal to each other and solve for x

Solve for x first:

$$
\begin{gathered}
x-2=-\frac{1}{2} x^{2}+2 x-3 \quad \rightarrow \frac{1}{2} x^{2}-x+1=0 \quad \text { (Does not Factor) } \\
x^{2}-2 x+2=0 \quad(\text { Multiply by the LCM) } \\
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \quad \rightarrow \quad x=\frac{-(-2) \pm \sqrt{(-2)^{2}-4(1)(2)}}{2(1)} \quad \text { Use the Quadratic Equation } \\
x=\frac{2 \pm \sqrt{-4}}{2}=\varnothing
\end{gathered}
$$

The line and parabola do not intersect. There are No Real Solutions.

Example 3: Solve the system: $\quad y=x^{2}-3 x-4$ and $2 x-y=3$
Solution 3: \quad Since one is already in terms of y, rearrange the other to also be in terms of y

$$
2 x-y=3 \quad \rightarrow \quad y=2 x-3
$$

Now since they are both equal to y we can set them equal to each other and solve for x

$$
y=x^{2}-3 x-4 \text { and } y=2 x-3 \quad \text { Since they both equal } y \text {, set them equal to each other }
$$

Solve for x first:

$$
\begin{gathered}
2 x-3=x^{2}-3 x-4 \quad \rightarrow \quad x^{2}-5 x-1=0 \quad \text { (Does not factor) } \\
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \rightarrow \quad x=\frac{-(-5) \pm \sqrt{(-5)^{2}-4(1)(-1)}}{2(1)} \quad \text { Use the Quadratic Equation } \\
x=\frac{5 \pm \sqrt{29}}{2}
\end{gathered}
$$

Now solve for y

$$
\begin{array}{ll}
y=2 x-3 & y=2 x-3 \\
y=2\left(\frac{5+\sqrt{29}}{2}\right)-3 & y=2\left(\frac{5-\sqrt{29}}{2}\right)-3 \\
y=5+\sqrt{29}-3 & y=5-\sqrt{29}-3 \\
y=2+\sqrt{29} & y=2-\sqrt{29}
\end{array}
$$

System has Solutions:

$$
\left(\frac{5+\sqrt{29}}{2}, 2+\sqrt{29}\right) \text { and }\left(\frac{5-\sqrt{29}}{2}, 2-\sqrt{29}\right)
$$

Example 4: Solve the system: $\quad y=x^{2}-x-3 \quad$ and $\quad y=2 x^{2}-x+7$
Solution 4: \quad Since they are both already in terms of y, set them equal to each other and solve for x

```
Solve for x first:
2x}2-x+7=\mp@subsup{x}{}{2}-x-
x 2 = -10 (Does not Factor)
x=\emptyset
The line and parabola do not intersect. There are No Real Solutions.
```

Example 5: \quad Solve the system: $\quad x^{2}-4 x+y+1=0 \quad$ and $\quad 2 x^{2}-2 x-y+2=0$
Solution 5: Even though they are both equal to zero, set them both equal to y to eliminate one variable
$x^{2}-4 x+y+1=0 \quad \rightarrow \quad y=-x^{2}+4 x-1 \quad$ and $\quad 2 x^{2}-2 x-y+2=0 \quad \rightarrow \quad y=2 x^{2}-2 x+2$
Now since they are both equal to y we can set them equal to each other and solve for x

```
Solve for }x\mathrm{ first:
-x + 4x-1 = 2x 2-2x+2 }->3\mp@subsup{x}{}{2}-6x+3=
```



```
x=1
Now solve for y
(1)}\mp@subsup{)}{}{2}-4(1)+y+1=
1-4+y+1=0
y=2
```

$y=-x^{2}+4 x-1$ and $y=2 x^{2}-2 x+2$ (Since they both equal y, set them equal to each other)

```
Check:
2(1)}\mp@subsup{)}{}{2}-2(1)-2+2=
2-2-2+2=0
```


Section 5.2 - Practice Problems

Find all the real solutions of the system of equations

1. $2 x^{2}-y=1$ and $y=5 x+2$
2. $x^{2}=2 y$ and $y=x-\frac{1}{2}$
3. $x^{2}-y=3$ and $y=3 x+7$
4. $x^{2}+y=4$ and $1=2 x+y$
5. $3 x^{2}-10 y=5$ and $x-y=-2$
6. $x^{2}+2 y=-2$ and $-2 x+y=1$
7. $y=x^{2}-x$ and $y=2 x$
8. $2 x^{2}-3 y=2$ and $x-2 y=-2$
9. $x+y=2$ and $y=1-x^{2}$
10. $y=x^{2}-6 x$ and $y=x-12$
11. $y=x^{2}+8 x-10$ and $y=3 x+4$
12. $x^{2}+y=9$ and $16=3 x+2 y$
13. $y=x^{2}$ and $x+y=3$
14. $y+2 x^{2}-2=0$ and $3 y-x-3=0$
15. $y-x^{2}=0$ and $x^{2}-2 x+y=6$
16. Find all the points of intersection of the parabola $y=x^{2}-4 x+2$ and the x-axis
17. $2 x^{2}+y=9$ and $y-x^{2}-5 x=1$
18. Find all the points of intersection of the parabola $y=75 x^{2}-33 x+157$ and the y-axis

Answer Key - Section 5.2

1.	$\left(-\frac{1}{2},-\frac{1}{2}\right),(3,17)$
2.	$(5,22),(-2,1)$
3.	$\left(1, \frac{1}{2}\right)$
4.	$(3,-5),(-1,3)$
5.	$(5,7),\left(-\frac{5}{3}, \frac{1}{3}\right)$
6.	$(2,2),\left(-\frac{5}{4}, \frac{3}{8}\right)$
7.	$(-2,-3)$
8.	No Solution
9. $(0,0),(3,6)$	
10. $(3,-9),(4,-8)$	

11. $(-7,-17),(2,10)$
12. $(1,1)$
13. $(2,5),\left(-\frac{1}{2}, \frac{35}{4}\right)$
14. $(4,6),\left(-\frac{10}{3}, \frac{10}{9}\right)$
15. $\left(\frac{-1+\sqrt{13}}{2}, \frac{7-\sqrt{13}}{2}\right),\left(\frac{-1-\sqrt{13}}{2}, \frac{7+\sqrt{13}}{2}\right)$
16. $\left(\frac{-1+\sqrt{73}}{12}, \frac{35+\sqrt{73}}{36}\right),\left(\frac{-1-\sqrt{73}}{12}, \frac{35-\sqrt{73}}{36}\right)$
17. $\left(\frac{1+\sqrt{13}}{2}, \frac{7+\sqrt{13}}{2}\right),\left(\frac{1-\sqrt{13}}{2}, \frac{7-\sqrt{13}}{2}\right)$
18. $\left(-\frac{8}{3},-\frac{47}{9}\right),(1,7)$
19. $(2+\sqrt{2}, 0),(2-\sqrt{2}, 0)$
20. $(0,157)$

Extra Work Space

