Section 5.2 - Logarithms and their Graphs

- Logarithms are the inverse operation of exponentials
- If we flip an exponential over the line $y=x$, we get the general shape of a logarithm
- Logarithmic rules and properties explored in the next few sections allow us to solve information that would otherwise be 'trapped' in an exponential

Since a logarithm (log) is the inverse of an exponential consider this:

$$
y=b^{x} \text { has an inverse of } x=b^{y}
$$

To free-up the y value we need logarithmic form, the relationship is as follows.

Definition of a Logarithmic Function

For $\boldsymbol{b}>\mathbf{0}, b \neq 1$

$$
y=\log _{b} x \text { is equivalent to } x=b^{y}, \boldsymbol{x}>\mathbf{0}
$$

Changing the Form

Customary Notation for the Base of a Logarithm

$\log _{n} a \quad$ is said to be a Base $n \log$
Examples:

$$
\log a \quad \log _{2} a \quad \log _{e} a=\ln a
$$

No Base means Base 10
Base 2
Base e makes a Natural Logarithm (ln)

Example 1: Change the following from logarithmic to exponential form
a) $\log _{4} 2=\frac{1}{2}$
b) $\log _{2} \frac{1}{8}=-3$

Solution 1:

c) $\log _{4} 2=\frac{1}{2} \rightarrow \quad 2=4^{\frac{1}{2}}$
d) $\log _{2} \frac{1}{8}=-3 \rightarrow \frac{\mathbf{1}}{\mathbf{8}}=\mathbf{2}^{-\mathbf{3}}$

Example 2: Change the following from logarithmic to exponential form
a) $3^{4}=81$
b) $3^{-2}=\frac{1}{9}$

Solution 2:

a) $\log _{3} 81=4$
b) $\log _{3} \frac{1}{9}=-2$

Example 3: Determine the numerical solution to the following
a) $\log _{4} 8$
b) $\log _{27} 9$

Solution 3: We will use the equation relationship here, but we will learn another way in the sections ahead.
a) Let $x=\log _{4} 8$

$$
\begin{aligned}
4^{x} & =8 \\
2^{2 x} & =2^{3} \\
2 x & =3 \\
x & =\frac{3}{2}
\end{aligned}
$$

$$
\text { b) Let } x=\log _{27} 9 \text { } \begin{aligned}
27^{x} & =9 \\
3^{3 x} & =3^{2} \\
3 x & =2 \\
x & =\frac{2}{3}
\end{aligned}
$$

Graphs of Logarithmic Functions

Basic Properties of the Graph $f(x)=\log _{b} x, \quad x>0, \quad b>0, \quad b \neq 1$

1. All graphs go through the point $(1,0)$ and there is no y - intercept
2. The y-axis is a vertical asymptote with equation $x=0$
3. When $b>1, f(x)=\log _{b} x$ is an increasing function
4. When $01, f(x)=\log _{b} x$ is a decreasing function

- As mentioned previously, exponentials and logarithms are inverses of one-another
- Here is a proof:

The Statement	The Proof	
$f(x)=b^{x}$ and $g(x)=\log _{b} x$ are inverses	 $y=f(x)=b^{x}$ $\rightarrow \quad x=b^{y}$ $y=\log _{b} x$ $\quad \rightarrow \quad f^{-1}=\log _{b} x$	

- And graphically we see that it is a reflection over the line $y=x$.
- And if we look at the Logarithmic Function, the Domain of the Log is the same as the Range of the Exponential

$$
\begin{aligned}
& \text { Domain of a Logarithm } \boldsymbol{y}=\log _{\boldsymbol{b}} \boldsymbol{x} \\
& \qquad b>0, \quad b \neq 1 \quad \text { and } \quad x>0
\end{aligned}
$$

Example 4: Determine the Domain of $y=\log _{x-3}(x+5)$
Solution 4: There are three things to consider here

The Base of the Logarithm first	The Object of the Logarithm second
$x-3>0 \quad \rightarrow \quad x>3$	
$x-3 \neq 1$	$\rightarrow \quad x \neq 4$

Consider this on a number line

We need to consider which stipulations cover all of it: Domain: $\quad x>3, x \neq 4$

Example 5: Determine the inverse of $f(x)=2^{x-1}+3$
Solution 5: \quad Let $y=f(x)$

$$
\begin{gathered}
y=2^{x-1}+3 \quad \rightarrow \quad x=2^{y-1}+3 \\
x-3=2^{y-1} \quad \rightarrow \quad \log _{2}(x-3)=y-1 \\
y=\log _{2}(x-3)+1 \\
f^{-1}(x)=\log _{2}(x-3)+\mathbf{1}
\end{gathered}
$$

Example 6: If the point $(-3,6)$ is on the graph of $y=b^{x}$. What point must be on the graph of $y=\log _{b} x$.

Solution 6: Since the two equations are inverses of one-another, we simply have to swap the coordinates.

$$
(-3,6) \quad \rightarrow \quad(6,-3)
$$

Section 5.2 - Practice Problems

1. Write the following in exponential form
a) $\log _{4} 16=2$
b) $\log _{3} 81=4$
c) $\log _{6} \frac{1}{36}=-2$
d) $\log \frac{1}{100}=-2$
e) $\log _{32} 8=\frac{3}{5} \quad$ f) $\log _{8} 8=1$
g) $\log _{5} 1=0$
h) $\log 1000=3$
i) $\log _{8} 4=\frac{2}{3}$
j) $\log _{4} \frac{1}{8}=-\frac{3}{2}$
2. Write the following in Logarithmic Form

a) $2^{4}=16$	b) $8^{2}=64$
c) $16^{\frac{1}{4}}=2$	d) $3^{-2}=\frac{1}{9}$
e) $3^{0}=1$	f) $10^{-2}=0.01$
g) $5^{1}=5$	h) $9^{\frac{3}{2}}=27$
$8^{\frac{4}{3}}=16$	j) $\left(\frac{2}{3}\right)^{-4}=\frac{81}{16}$
i)	

3. Evaluate the log without a calculator.
a) $f(x)=\log _{2} 8$
b) $f(x)=\log _{4} 16$

c) $f(x)=\log _{8} 2$	d) $f(x)=\log _{16} 4$
e) $f(x)=\log _{5} 1$	f) $f(x)=\log _{7} 7$
g) $f(x)=\log _{a} a$	h) $f(x)=\log _{a} a^{3}$
i) $f(x)=\log _{b} b^{-4}$	j) $f(x)=\log _{5} 0$

4. Find the unknow information without a calculator

a) $\log _{x} 27=3$	b) $\log _{4} x=-3$
c) $\log 1000=x$	d) $\log _{x} 8=1$
	7

Pre-Calculus 12
e) $\log _{7} x=-2$
f) $\log _{9} 27=x$

g) $\log _{x} 32=2$	h) $\log _{4} x=0$
i) $\log _{32} 8=x$	j) $\log _{x} 625=4$
k) $\log _{4} x=\frac{3}{2}$	

5. What is the Domain of the following functions.

a) $f(x)=\log _{3}(x-1)$	b) $f(x)=-\log _{2} x+3$
c) $f(x)=\log _{(2-x)} 5$	d) $f(x)=\log _{3}(-x)$
e) $f(x)=\log _{x+1}(x-2)$	f) $f(x)=\log _{x-2}(x+1)$

6. Match the Equation to the Graph

a) $f(x)=\log _{3}(x-1)$	
b) $f(x)=\log _{3}(1-x)$	
c) $f(x)=\log _{3} x+2$	
d) $f(x)=-\log _{3} x$	
e) $f(x)=-\log _{3}(-x)$	
f) $f(x)=-\log _{3}(x+2)$	

A

D

B

E

F

7. If $y=\log _{b} a$ is shown by the graph below left, what is the shape of:

a) $y=-\log _{b} a$

b) $y=\log _{b}(-a)$

c) $y=\log _{\frac{1}{b}} a$

8. If point (a, b) is on the graph of $y=5^{x}$, what point satisfies $y=\log _{5} x$?
9. If point on the graph of $y=\log _{2} x$ is $(1,0)$, what point must be on the graph of $y=-\log _{2} x$?
10. If (c, d) is on the graph of $y=\log _{b} a$ what point must be on the graph of $y=\log _{\frac{1}{b}} a$?
11. Without a calculator, between what two integers do we find:
a) $\log 1253$
b) $\log 0.025$
12. Graph $y=\log (2-x)$, label asymptotes and axis crossings

13. Determine the inverse of the following functions:
a) $y=8^{x-2}$
c) $y+1=\log _{3}(x-2)$
b) $f(x)=5^{4 x-1}+6$
d) $f(x)=2+\log (5 x-3)$

Extra Work Space

