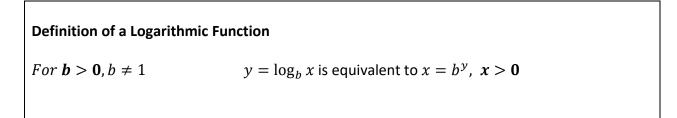
Section 5.2 – Logarithms and their Graphs

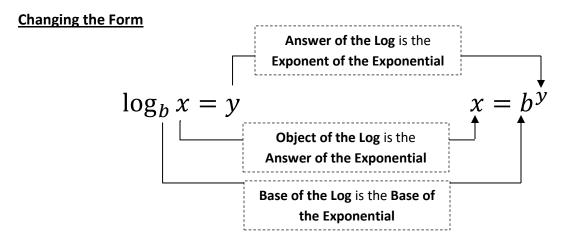
- Logarithms are the inverse operation of exponentials
- If we flip an exponential over the line y = x, we get the general shape of a logarithm
- Logarithmic rules and properties explored in the next few sections allow us to solve information that would otherwise be 'trapped' in an exponential

Since a logarithm (log) is the inverse of an exponential consider this:

 $y = b^x$ has an inverse of $x = b^y$

To free-up the y value we need logarithmic form, the relationship is as follows.

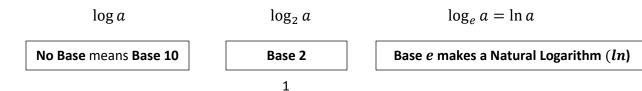




Customary Notation for the Base of a Logarithm

 $\log_n a$ is said to be a Base *n* Log

Examples:



Adrian Herlaar, School District 61

Example 1: Change the following from logarithmic to exponential form

a)
$$\log_4 2 = \frac{1}{2}$$
 b) $\log_2 \frac{1}{8} = -3$

Solution 1:

c)
$$\log_4 2 = \frac{1}{2} \rightarrow 2 = 4^{\frac{1}{2}}$$
 d) $\log_2 \frac{1}{8} = -3 \rightarrow \frac{1}{8} = 2^{-3}$

Example 2: Change the following from logarithmic to exponential form

a)
$$3^4 = 81$$

b) $3^{-2} = \frac{1}{9}$

Solution 2:

a) $\log_3 81 = 4$ b) $\log_3 \frac{1}{9} = -2$

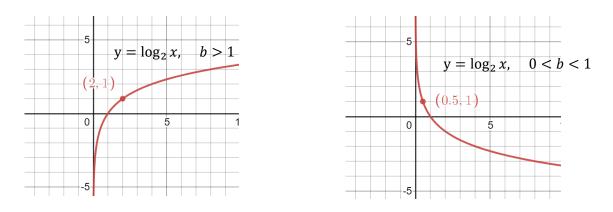
Example 3: Determine the numerical solution to the following

- a) log₄ 8 b) log₂₇ 9
- **Solution 3:** We will use the equation relationship here, but we will learn another way in the sections ahead.
- a) Let $x = \log_4 8$ $4^x = 8$ $2^{2x} = 2^3$ 2x = 3 $x = \frac{3}{2}$ b) Let $x = \log_{27} 9$ $27^x = 9$ $3^{3x} = 3^2$ 3x = 2 $x = \frac{2}{3}$

Graphs of Logarithmic Functions

Basic Properties of the Graph $f(x) = \log_b x$, x > 0, b > 0, $b \neq 1$

- 1. All graphs go through the point (1, 0) and there is no y *intercept*
- 2. The y axis is a vertical asymptote with equation x = 0
- 3. When b > 1, $f(x) = \log_b x$ is an increasing function
- 4. When 0 < b > 1, $f(x) = \log_b x$ is a decreasing function

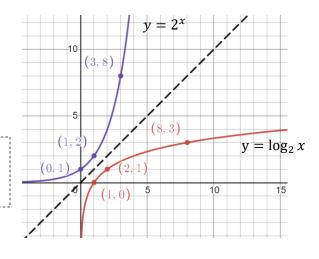


- As mentioned previously, exponentials and logarithms are inverses of one-another
- Here is a proof:

The Statement	The Proof
$f(x) = b^x$ and $g(x) = \log_b x$ are inverses	$y = f(x) = b^x \rightarrow x = b^y$
	$y = \log_b x \qquad \rightarrow \qquad f^{-1} = \log_b x$

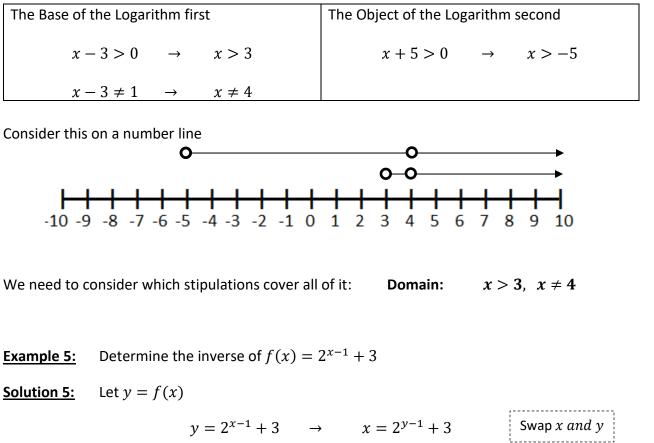
- And graphically we see that it is a reflection over the line y = x.
- And if we look at the Logarithmic Function, the Domain of the Log is the same as the Range of the Exponential

Domain of a Logarithm $y = \log_b x$ $b > 0, b \neq 1$ and x > 0



Example 4: Determine the Domain of $y = \log_{x-3}(x+5)$

Solution 4: There are three things to consider here



$x - 3 = 2^{y - 1}$	$\rightarrow \qquad \log_2(x-3) = y-1$	Solve for y
y =	$\log_2(x-3) + 1$	Replace y with $f^{-1}(x)$
$f^{-1}(x)$	$= \log_2(x-3) + 1$	

- **Example 6:** If the point (-3, 6) is on the graph of $y = b^x$. What point must be on the graph of $y = \log_b x$.
- **Solution 6:** Since the two equations are inverses of one-another, we simply have to swap the coordinates.

$$(-3,6) \rightarrow (6,-3)$$

Section 5.2 – Practice Problems

1. Write the following in exponential form

a) $\log_4 16 = 2$	b) $\log_3 81 = 4$
c) $\log_6 \frac{1}{36} = -2$	d) $\log \frac{1}{100} = -2$
e) $\log_{32} 8 = \frac{3}{5}$	f) $\log_8 8 = 1$
g) $\log_5 1 = 0$	h) log 1000 = 3
i) $\log_8 4 = \frac{2}{3}$	j) $\log_4 \frac{1}{8} = -\frac{3}{2}$
Adrian Harlaar, School Dictrict 61	5

Pre-Calculus 12

2. Write the following in Logarithmic Form

a) 2 ⁴ = 16	b) $8^2 = 64$
c) $16^{\frac{1}{4}} = 2$	d) $3^{-2} = \frac{1}{9}$
e) $3^0 = 1$	f) $10^{-2} = 0.01$
g) 5 ¹ = 5	h) $9^{\frac{3}{2}} = 27$
i) $8^{\frac{4}{3}} = 16$	j) $\left(\frac{2}{3}\right)^{-4} = \frac{81}{16}$

3. Evaluate the log without a calculator.

a)
$$f(x) = \log_2 8$$

b) $f(x) = \log_4 16$

c) $f(x) = \log_8 2$	d) $f(x) = \log_{16} 4$
e) $f(x) = \log_5 1$	f) $f(x) = \log_7 7$
g) $f(x) = \log_a a$	h) $f(x) = \log_a a^3$
i) $f(x) = \log_b b^{-4}$	$f(x) = \log_5 0$

4. Find the unknow information without a calculator

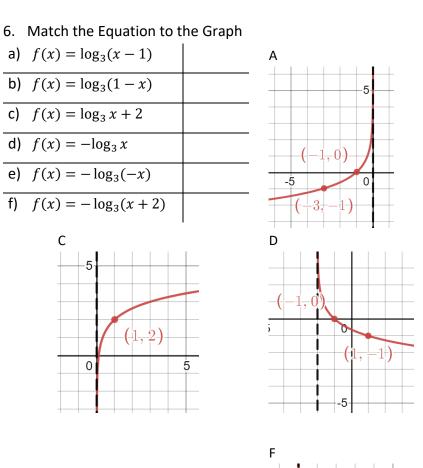
a) $\log_x 27 = 3$	b) $\log_4 x = -3$
c) log 1000 = <i>x</i>	d) $\log_x 8 = 1$

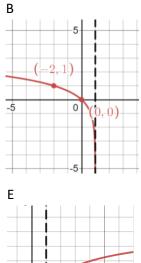
e) $\log_7 x = -2$	f) $\log_9 27 = x$
g) $\log_x 32 = 2$	h) $\log_4 x = 0$
i) $\log_{32} 8 = x$	j) $\log_x 625 = 4$
k) $\log_4 x = \frac{3}{2}$	I) $\log_4 0.25 = x$
m) $\log_{\sqrt{2}} x = 8$	n) $\log_{\sqrt{3}} x = 4$

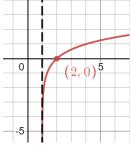
o) $\log_x \sqrt{3} = \frac{1}{2}$	p) $\log_{3x} 36 = 2$
q) $\log_{\sqrt{2}} 16 = x$	r) $\log_{\sqrt{3}} 9 = x$
s) $\log_7(x^2 + 24) = 2$	t) $\log(x-2)^2 = -2$

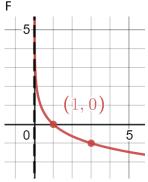
5.	What is the Domain of the following functions.
----	--

a) $f(x) = \log_3(x - 1)$	b) $f(x) = -\log_2 x + 3$
c) $f(x) = \log_{(2-x)} 5$	d) $f(x) = \log_3(-x)$
e) $f(x) = \log_{x+1}(x-2)$	f) $f(x) = \log_{x-2}(x+1)$

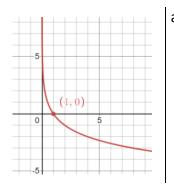








7. If $y = \log_b a$ is shown by the graph below left, what is the shape of:

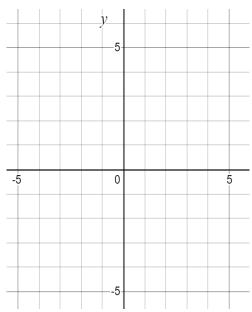


a) $y = -\log_b a$

www.mrherlaar.weebly.com

b) $y = \log_b(-a)$	c) $y = \log_{\frac{1}{b}} a$
8. If point (a, b) is on the graph of $y = 5^x$, what point satisfies $y = \log_5 x$?	9. If point on the graph of $y = \log_2 x$ is (1,0), what point must be on the graph of $y = -\log_2 x$?
10. If (c, d) is on the graph of $y = \log_b a$ what point must be on the graph of $y = \log_{\frac{1}{b}} a$?	11. Without a calculator, between what two integers do we find:a) log 1253
	b) log 0.025

12. Graph $y = \log(2 - x)$, label asymptotes and axis crossings



13. Determine the inverse of the following functions:

a) $y = 8^{x-2}$	b) $f(x) = 5^{4x-1} + 6$
c) $v + 1 = \log_2(x - 2)$	d) $f(x) = 2 + \log(5x - 3)$
c) $y + 1 = \log_3(x - 2)$	d) $f(x) = 2 + \log(5x - 3)$
c) $y + 1 = \log_3(x - 2)$	d) $f(x) = 2 + \log(5x - 3)$
c) $y + 1 = \log_3(x - 2)$	d) $f(x) = 2 + \log(5x - 3)$
c) $y + 1 = \log_3(x - 2)$	d) $f(x) = 2 + \log(5x - 3)$

See Website for Detailed Answer Key

Extra Work Space