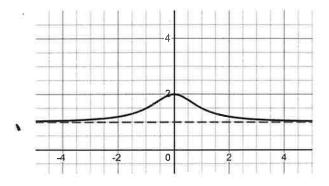
5.2 Horizontal Asymptotes

Consider the behaviour of the following function as x gets large in either direction.

$$f(x) = \frac{x^2 + 2}{x^2 + 1}$$

x	$f(x) = \frac{x^2 + 2}{x^2 + 1}$
0	2.000 000
±1	1.500 000
±2	1.200 000
±5	1.038 462
±10	1.009 901
±100	1.000 100
±1000	1.000 001



From both the table and thee graph, we can see that as x gets infinitely large, our graph approaches the line y = 1. We can express this behaviour using our limit notation.

$$\lim_{x \to \infty} \frac{x^2 + 2}{x^2 + 1} = 1$$

Likewise, as decrease our x value infinitely,

$$\lim_{x \to -\infty} \frac{x^2 + 2}{x^2 + 1} = 1$$

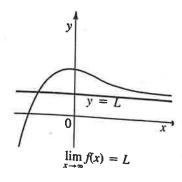
In general, we define a limit at infinity by writing

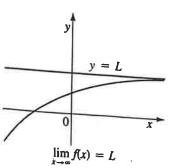
$$\lim_{x\to\infty}f(x)=L$$

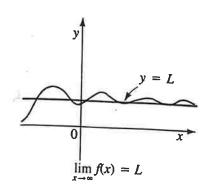
And it is read,

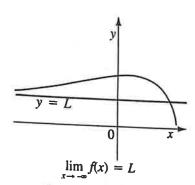
"the limit of f(x), as x approaches infinity, is L"

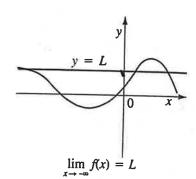
The line y = L is called a Horizontal Asymptote of the curve y = f(x). There are many ways to consider the behaviour of a function, but we only consider horizontal asymptotic behaviour as x approaches $\pm \infty$. That means, depending on the scenario, as long as x is not approaching $\pm \infty$ you can in fact cross through a horizontal asymptote.

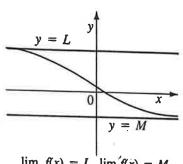












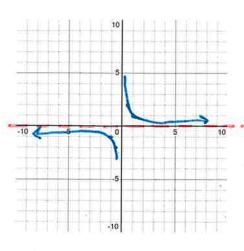
$$\lim_{x \to -\infty} f(x) = L, \lim_{x \to \infty} f(x) = M$$

Find Ex.1

$$\lim_{x\to\infty}\frac{1}{x}$$

and

$$\lim_{x \to -\infty} \frac{1}{x}$$



If r is a positive rational number, then

$$\lim_{x \to \infty} \frac{1}{x^r} = 0$$

If r is a positive rational number and x^r is defined for all x, then

$$\lim_{x \to -\infty} \frac{1}{x^r} = 0$$

Ex. 2 Evaluate

$$\lim_{x \to \infty} \frac{4x^2 - x + 2}{6x^2 + 5x + 1}$$

To evaluate a limit of a rational function at infinity, divide the terms in the numerator and the denominator by the highest power of x that occurs. We can assume that $x \neq 0$ as we are only interested in large values of x.

highest power is
$$\times^2$$

highest power is \times^2

$$\frac{4x^2}{x^2} - \frac{x}{x^2} + \frac{2}{x^2}$$

$$\frac{6x^2}{x^2} + \frac{5x}{x^2} + \frac{1}{x^2}$$

$$\frac{6+5}{x} + \frac{1}{x^2}$$

$$\frac{4-0+0}{6+0+0} = \frac{4}{6} = \boxed{2}$$

Ex. 3 Find the horizontal and vertical asymptotes of the following function, discuss behaviour at the vertical asymptotes and sketch the graph.

$$VA \Rightarrow x = 2$$

$$VA \Rightarrow x = 2$$

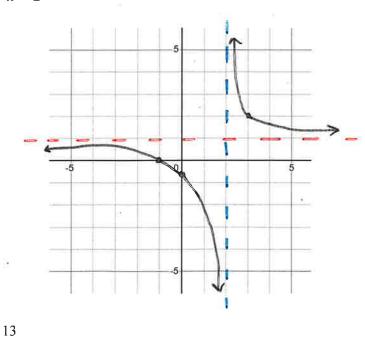
$$VA \Rightarrow y = 1$$

$$VA \Rightarrow y = 1$$

$$VA \Rightarrow y = 1$$

$$VA \Rightarrow x = 2$$

$$VA$$



Ex. 4 Find the horizontal and vertical asymptotes of the following function and sketch the graph.

$$y = \frac{x}{x^2 - x - 6}$$

HA:

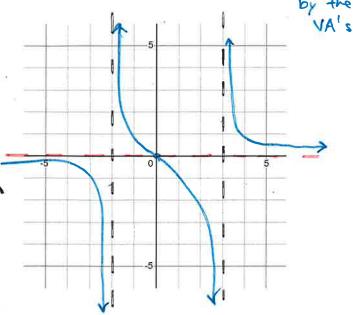
$$\frac{x^{2}}{x^{2}} = \frac{1}{x^{2}} = \frac{1}{x^{2}$$

owing function and sketch the grap...

* Notice use can cross the HA

as x is not going to ±00, trapped
by the

VA's



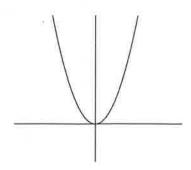
Infinite Limits at Infinity

If f(x) values become infinity large as x does, we use the following notation.

$$\lim_{x\to\infty}f(x)=\infty$$

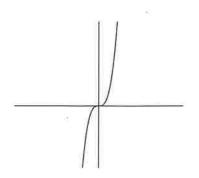
14

Similarly, depending on graph behaviour we can see the following:



$$\lim_{x\to\infty}f(x)=\infty$$

$$\lim_{x \to -\infty} f(x) = \infty$$



$$\lim_{x \to \infty} f(x) = \infty$$

$$\lim_{x \to -\infty} f(x) = -\infty$$

Ex. 5 Find

$$\lim_{x\to\infty}(x^4-x)$$

We cannot look and this like lin x - lin x because oo is not a number and (00-00) cannot be defined.

bud ..

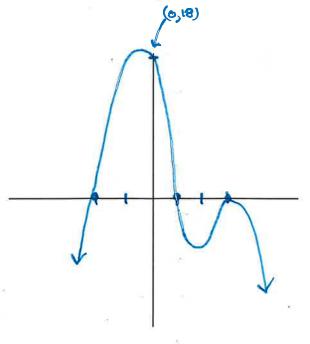
lin x (x3-1) gives co (co) large numbers is infinitely large.

Ex. 6 Sketch the graph of $y = (x-3)^2(x+2)(1-x)$ by finding the intercepts and its limits as $x \to \pm \infty$

bours off

y-2: 18

4th degree starts down ands



Homework Questions

Practice Problems: # 2acfh, 3ad, 4acf, 11