Section 5.1 - Scale

This booklet belongs to: \qquad Block: \qquad

Similar Shape Requirements

- When two or more objects are to scale it is implied that they are similar figures
- When shapes or figures are SIMILAR it is a MUST that the:
- Corresponding Angles are EQUAL

- Corresponding sides have PROPORTIONATE RATIOS

- If you measure $\frac{\text { Big }}{\text { Small }}$
we get a Ratio of: $\frac{A B}{D E}=\frac{A C}{D F}=\frac{B C}{E F}=2$
- If you measure $\frac{\text { Small }}{\text { Big }}$ we get a Ratio of: $\frac{D E}{A B}=\frac{D F}{A C}=\frac{E F}{B C}=\frac{1}{2}$

As long as you are consistent the ratios should always be proportionate

Scale

- Once we know the shapes are similar, we can calculate the scale factor
- For basic shapes, it matters which is the Image and which is the Object
- The Object is the original, Replication is the Image

There are three scenarios for Scale Factor
> If two shaped are the SAME SIZE what is the Scale Factor?
i)

What is the Scale? Obviously, since they are the same it is 1
$>$ So, if the IMAGE is larger, would it make sense for the Scale Factor to be bigger or less than 1?
ii)

It's TWICE as big, the Scale Factor is 2
$>$ If the IMAGE is smaller, would it make sense for the Scale Factor to be bigger or less than 1?

It means that the Scale Factor, the proportional of Image to Object is always written.

$$
\text { Scale Factor }=\frac{\text { New }}{\text { Orignal }}
$$

From above... here is the calculation, and the specific type of size change.
i)

$$
\frac{\text { New }}{\text { Original }}=\frac{3}{3}=1, \quad \text { Equal to } 1 \text { means they are the SAME SIZE }
$$

ii)

$$
\frac{\text { New }}{\text { Original }}=\frac{4}{2}=2, \quad \text { Greater } \text { than } 1 \text { is called an ENLARGEMENT }
$$

iii)

$$
\frac{\text { New }}{\text { Original }}=\frac{2}{4}=\frac{1}{2}, \quad \text { Less than } 1 \text { is called a REDUCTION }
$$

Example 1: \quad Assuming the following are SIMILAR, what is the Scale Factor of the following shape?

Solution 2:

New

Scale $=\frac{\text { Image }}{\text { Object }} \rightarrow \frac{13}{5} \quad \rightarrow \quad$ Greater than 1 , so it's an ENLARGEMENT

- In this section we will be comparing a variety of shapes, we call them POLYGONS
- Polygons are a union of three or more segments, where each segment intersects with exactly two other segments at its endpoint (vertices)
- Here is an example of the most used and discussed POLYGONS

Triangle - A 3-sided Polygon

There are four types of Triangles

	Right Triangle - Has a 90° angle		Isosceles Triangle - Two sides the same - Two angles the same
	Equilateral Triangle - All sides the same - All angles the same		Scalene Triangle - No sides the same - No angles the same

Quadrilateral - A 4-sided Polygon

We will look at 5 different types

	Trapezoid - One pair of Parallel Sides		Parallelogram - Both opposite Sides Parallel and Equal
	Rhombus - Same as a parallelogram, but all sides equal		Rectangle - Four equal angles - Opposite sides Parallel and Equal
Drawing images at different Scales			Square is a special type of rectangle

- Scale drawing are used all the time
- It wouldn't always be practical to draw items their original size, we need to be able to scale them up or down
- Think about representing an ant, it wouldn't be efficient to try to identify anatomy unless we increase the size
- Or think about a building, if we wanted to fit a drawing on a piece of paper we would need to scale it down
- We need to use scale factor to keep the drawings accurate, every aspect needs to be scaled up or down accordingly.
- Measure the Image
- Measure the grid for the new image
- In this case the grid is provided, so you transpose the drawing
- Scale factor of 2 !

Scale of Existing Pieces

- New/Original doesn't really work when we are talking about actual objects. What matters is which you are comparing to which

Example: Consider the Golden Gate Bridge.

Before the bridge physically existed, they would have created a model to demonstrate what the bridge would look like. The scale depends on how you compare the two pieces:

The ACTUAL bridge is 5000 times as big as the model that was made to demonstrate it. In that case, the Scale Factor is: 5000: 1

This means: $\frac{5000}{1}$ or 5000 times as big

The MODEL bridge is a $5000^{\text {th }}$ the size of the completed bridge. In this case, the Scale Factor is: $1: 5000$

This means: $\frac{1}{5000}$ or 5000 times smaller

The Ratios are interchangeable, depending on the given scenario. This will come in handy during unit conversions.

Section 5.1 - Practice Problems

What is the Scale Factor of the following images? In order to be to scale the two objects are assumed to be Similar Figures.
1.

Original

New

2. Original

New

3.

4. Explain what Scale Factor represents in your own words. Give me an example that you've seen before. (Not shapes on paper in math)
5. A vertical pole 3 m high has a shadow 5 m long. If a vertical building is 66 m high, how long is the building's shadow at the same time of day?
6. A 193 kg lunar vehicle weighs 31 kg on the moon. How much does 90 kg person weigh on the moon?
7. A hockey rink is 96 m by 48 m draw a scale model of a hockey rink if the scale factor is 1 cm to 12 m . You'll need a ruler.
8. If the height of the model display of the New Vic High building is 30 cm , and the height of the actual building in 30 m . How can we describe the ratio of the two? Demonstrate how the ratio changes depending on how we compare. Careful with unit. $(1 \mathrm{~m}=100 \mathrm{~cm})$
9. Draw the following image to the given scale factors
(grid is for accurate measurement, location of image does not matter)

10. Complete the following, identify the scale factor

Original Size is:
New Size is:

Scale Factor:

