Review and Preview to Chapter 4

Intervals

In calculus sets of real numbers occur frequently and are called **intervals**. They often represent a range of x values over which you may be interested in knowing something about a function. There are two types of intervals, open intervals, and closed intervals.

• Open Interval – the open interval from a to b includes all numbers between a and b, excluding a and b. The interval can be written as

broader
$$(a,b) = \{x | a < x < b\}$$

• Closed Interval – the closed interval from a to b includes all numbers between a and b, including a and b. The interval can be written as

$$[a,b] = \{x | a \le x \le b\}$$

To write the interval all numbers greater than a we can write the following

$$(a, \infty) = \{x | x > a\}$$

Notation	Set Notation	Number Line	
(a, b)	$\{x \mid x \in \mathbb{R}, a < x < b\}$	← C → C → b	
[a, b]	$\{x x\in\mathbb{R},a\leq x\leq b\}$	←	
[a, b)	$\{x x \in \mathbb{R}, a \le x < b\}$	4	
(a, b]	$\{x x \in \mathbb{R}, a < x \le b\}$	♦ ♦ ♦	
(a,∞)	$\{x x\in\mathbb{R},x>a\}$	♦ ♦ ♦	
[a,∞)	$\{x x\in\mathbb{R},x\geq a\}$	4 a b	
(−∞, b)	$\{x x \in \mathbb{R}, x < b\}$	← ← ← ← ← ← ← ← ← ← ← ←	
(-∞, b]	$\{x x\in\mathbb{R},x\leq b\}$	← ← → → →	
(-∞,∞)	$\{x x\in\mathbb{R}\}$	++	

Express the following intervals in terms of inequalities and graph the intervals on a number line.

(a) $\left[\frac{1}{2}, 4\right]$

(b) [-2,1)

(c) $(-4, \infty)$

Inequalities

Rules for Inequalities (Applies to >, <, \ge ,

- If a < b, then a + c < b + c.
- If a < b and c < d, then a + c < a + d.
- If a < b and c > 0, then ac < bc.
- If a < b and c < 0, then ac > bc.
- 5. If 0 < a < b, then $\frac{1}{a} > \frac{1}{b}$.

Solve the inequality 1 + x < 6x - 4.

5<5x

 $\frac{\text{Ex. 3}}{\text{Solve } x^2 + 2x > 0.}$

 $\times (x+2) > 0$ zero points at x=0 Test regions on either side so to solve x2+2x70

2

 $\begin{cases} x \mid x > 0 \text{ or } x < -2 \end{cases}$ $(-\infty, -2) \cup (0, \infty)$

Ex. 4

- (a) Solve the inequality (x+1)(x-2)(x-3) < 0.
- (b) Solve the inequality (x + 1)(x 2)(x 3) > 0

Interval	(x+1)	(x-2)	(x-3)	Product
x<-1	<i>~</i>		-	(-)
-1 < x < 2	+	-	_	+
2 <x<3< td=""><td>+</td><td>+</td><td>-</td><td><u>(-)</u></td></x<3<>	+	+	-	<u>(-)</u>
×73	+	+	+	+

a)
$$\{x \mid -1 < x \text{ or } 2 < x < 3\} = (-\infty, -1) \cup (2,3)$$

Homework Assignment

- Exercise 1: #1 2
- Exercise 2: #1 − 2