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Calculus 12 ; Ch. 4: Extreme Values

4.5 Extreme Value Problems in Economics

We can now use the techniques we have learned in this chapter and apply it to a very important setting:
business. Now we have the means to minimizer and maximize average costs, revenue, and profits.

In Section 3.4 we were introduced to the Cost Function € (x), and the Marginal Cost Function C’(x)
which was the rate of change of C with respect to x (the Derivative). The average cost function however,
is the cost per unit when x units are produced and is given by the function:

c(x)

() ==~

We want to minimize the average cost and we do so by locating the critical number of c. Using the
Quotient Rule to differentiate the equation above we get:

xC'(x) — C(x) _

c'(x) = p

0
xC'(x)—C(x)=0
xC'(x) = C(x)

C'(x) = @ = c(x)

What this demonstrates is that:

When the average cost is a minimum.

1 Marginal Cost = Average Cost_l

Ex1: The cost in dollars, of producing x 5kg bags of flour is
C(x) = 140 000 + 0.43x + 0.000 001x2

a) Find the average cost and marginal cost of producing 100 000 bags
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b) At what production level will the average cost be smallest, and what is the average cost? ‘
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Recall the relationship between the Demand Function p(x) and the Revenue Function R (x).

R(x) = xp(x) |
The Marginal Revenue Function is: R'(x)
Recall that the Profit Function is:

P(x) =R(x) — C(x)

And to maximize profit we look for critical numbers of P(x).

Where P'(x) = 0 or in other words R'(x) — C'(x) =0 - R'(x) = C'(x)

For Maximum Profit

Marginal Revenue = Marginal Cost
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Ex2: Recall in Section 3.4 Howard’s Hamburgers had a yearly Demand Function of:

. 800 000 — x

P = 3050000

and a Cost Function

C(x) =125000 + 0.42x

What level of sales will maximize profits?
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shows that for each $10 rebate offered to the buyers, the number of sales increases by 20
a week.

Ex 3: A store has been selling 200 compact discs players a week a $350 each. A market survey '

a) Find the demand function and the revenue function
b) How large of a rebate would maximize the revenue?
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