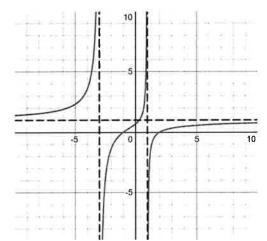

Section 4.4 – Practice Problems

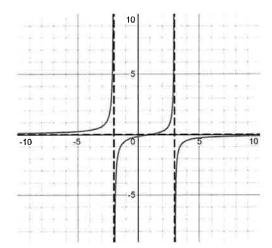
1. For the following functions, find the Domain, the Vertical and Horizontal Asymptotes (if any), and approximate any x - intercept(s) and y - intercept(s)

$$a) \quad f(x) = \frac{2x+4}{x-1}$$


b)
$$f(x) = \frac{4}{x^2 - 4}$$

D: x = 1

HA: y=2 VA: x=1 y-id: (0,-4) x-id: (-2,0)


c)
$$f(x) = \frac{x^2 - x - 2}{x^2 + 2x - 3}$$

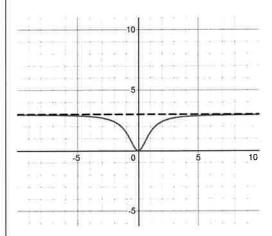
D: xx1,-3 x,N: (-1,0)

(2,0)

y =
$$\frac{1-x}{(0, \frac{1}{3})}$$

e) $f(x) = \frac{1-x}{x^2-x-6}$

xend: (1,0)


VA: x=-2,3

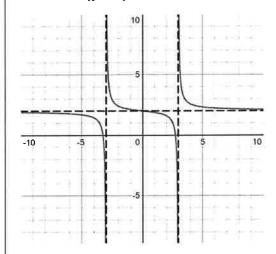
HA: Y= 0

y-nd: 60,-6)

Adrian Herlaar, School District 61

d)
$$f(x) = \frac{3x^2}{x^2 + 1}$$

D: All Read 45


x.....(0,0)

VA: Wore

HA: y=3

yend: (0,0)

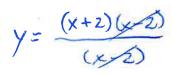
f)
$$f(x) = \frac{x}{x^2 - 9} + 2$$

Vh: x= ±3 H: y=2 y-d: (0,2)

D: X # ±3 X. nd: Approximation

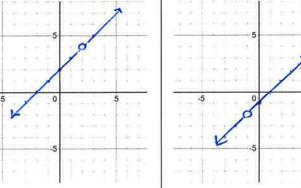
(29,0)

(-3.1,0)

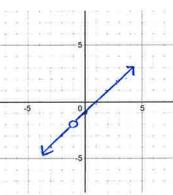

Guadratic

www.mrherlaar.weebly.com

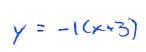
Pre-Calculus 12

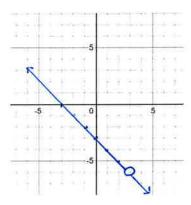

2. Find the Hole in the following Functions, sketch the graph and show where the Hole appears.

a)
$$f(x) = \frac{x^2 - 4}{x - 2}$$



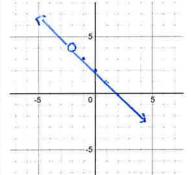
when x= 2 Hde at (2,4)

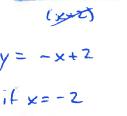

$$f(x) = \frac{1}{x}$$



b)
$$f(x) = \frac{x^2 - 1}{x + 1}$$

c)
$$y = \frac{x^2 - 9}{3 - x}$$


when
$$x=3$$


$$y=-6$$

$$Hdles at$$

$$(+3,-6)$$

d)
$$y = \frac{4 - x^2}{x + 2}$$
 $\rightarrow \frac{-x^2 + 4}{x + 2} \Rightarrow \frac{-1(x^2 + 4)}{(x + 2)}$

3. Fill in the table of values for the following functions. Get comfortable with calculators and observe the behaviour of functions as they approach asymptotes. $\mathcal{L}_{\text{tot}} \Rightarrow 3$

fex > 3 meas

$$a) \quad f(x) = \frac{3}{x-1}$$

x	0.5	1.5	0.9	1.1	0.99	1.01
f(x)	-6	6	-30	30	-300	300

VA od xel

Γ	х	10	100	1000	-10	-100	-1000
Г	f(x)	0.3	0.03	0.003	- o.31	- 0.03	- 0.053

As	x > it	fox - oo	
As	$\chi \rightarrow ($	fox -> -00	Town

As x → -00 fcv → 0+

b)
$$f(x) = \frac{3x^2 - 1}{x^2}$$

x	-0.5	0.5	-0.1	0.1	-0.01	0.01
f(x)	- (-1	-97	-97	-9997	- 9997

VA ad x=0

х	10	100	1000	-10	-100	-1000
f(x)	2.9	2.799	2.9999	299	2999	2.999

As
$$x \to 0^+$$
 fun $\to -\infty$
As $x \to 0^-$ fun $\to \infty$
As $x \to \infty$ fun $\to 3^-$
As $x \to \infty$ for $\to 3^-$

	66.3		x
C)	f(x)	=	$\overline{x-2}$

x	1.5	2.5	1.9	2.1	1.99	2.01
f(x)	-3	5	19	21	-129	201

VA: x=2

x	10	100	1000	-10	-100	-1000
f(x)	1,25	1.02	1.002	0.93	078	8,798

As x \rightarrow 2 for \rightarrow -00

4. Find the roots (zero's, solution, x - intercepts), if they exist, of the Rational Functions

a)
$$f(x) = \frac{x^2 - 4}{x + 2}$$
 $\rightarrow \frac{(x+2)(x-2)}{(x+2)}$ b) $g(x) = 1 - \frac{3}{x^2 + 2}$

b)
$$g(x) = 1 - \frac{3}{x^2 + 2}$$

$$\frac{x^2 + 2}{x^2 + 2} - \frac{3}{x^2 + 2} \rightarrow \frac{x^2 - 1}{x^2 + 2} \rightarrow \frac{(x + 1)(x - 1)}{x^2 + 2}$$

c)
$$h(x) = 1 - \frac{3}{x - 3}$$

$$\frac{x - 3}{x - 3} - \frac{3}{x - 3} \rightarrow \frac{x - 6}{x - 3}$$

d)
$$f(x) = -1 + \frac{4}{x^2 + 1}$$

$$-\frac{(x^2 + 1)}{(x^2 + 1)} + \frac{4}{(x^2 + 1)} \rightarrow \frac{-x^2 - 1 + 4}{x^2 + 1}$$

$$\frac{-\chi^{2}+3}{\chi^{2}+1} = \frac{-1(\chi^{2}-3)}{\chi^{2}+1}$$

e)
$$g(x) = 1 + \frac{4}{x^2 + 1}$$

$$\frac{x^{2}+1}{x^{2}+1} + \frac{4}{x^{2}+1} \rightarrow \frac{x^{2}+5}{x^{2}+1}$$

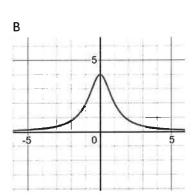
f)
$$h(x) = \frac{x^3 + 8}{x^2 + 4}$$

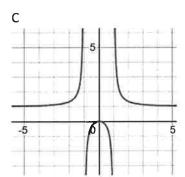
$$8 - \int_{\mathcal{E}} z = \int_{\mathcal{X}} \int_{\mathcal{E}} x \int_{\mathcal{$$

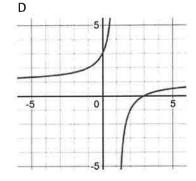
$$x = -2$$

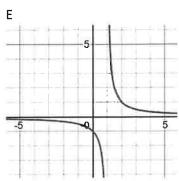
5. Match the equation with the graph.

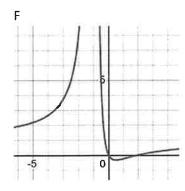
a)	$h(x) = \frac{1}{x-1}$	E	$b) \ h(x) = \frac{x}{x-1}$	H	$c) h(x) = \frac{-2}{x-1}$	J
----	------------------------	---	-----------------------------	---	-----------------------------	---

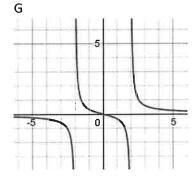

d)
$$h(x) = \frac{1}{x^2}$$
 e) $h(x) = \frac{-x^2}{x^2 - 1}$ A f) $h(x) = \frac{x^2}{x^2 - 1}$

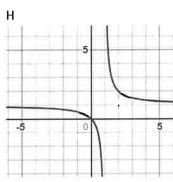

A | f)
$$h(x) = \frac{x^2}{x^2 - 1}$$
 | C

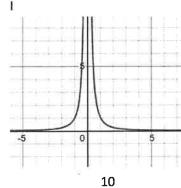

g)
$$h(x) = \frac{x-3}{x-1}$$
 h) $h(x) = \frac{4}{x^2+1}$

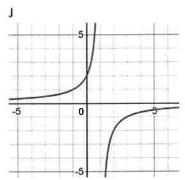

i)
$$h(x) = \frac{x}{x^2 - 4}$$

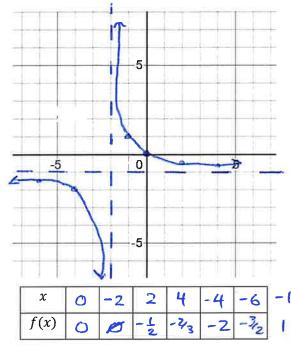

j) $h(x) = \frac{x^2 - 2x}{x^2 + 2x + 1}$ F







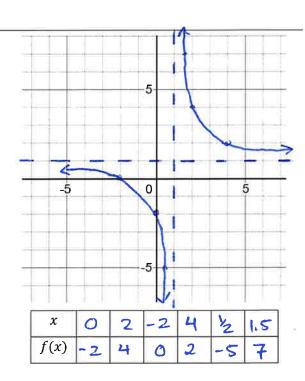




- 6. Sketch the following Rational Functions. State the Domain, the x-intercepts and intercepts, identify the vertical asymptotes, horizontal asymptotes, and holes. Plot additional points to help generate the graph.
- a) $h(x) = \frac{-x}{x+2}$

D: xx -2

VA: k=-2 VA: y=-1 X=1A!: (0,0) Y=A: (0,0)

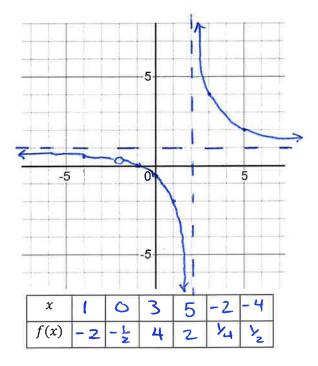


b) $h(x) = \frac{x+2}{x-1}$

D: x = 1

W: X=1

HA: y= 1 x-d: (-2.0) y-d: (0,-2)


c)
$$h(x) = \frac{x^2 + 3x + 2}{x^2 - 4} \rightarrow \frac{(x+2)(x+1)}{(x+2)(x-2)}$$

$$y = (x+1)$$

$$(x-2)$$

$$y = \frac{(x+1)}{(x-2)}$$
 if $x = -2$
 $y = \frac{1}{4}$

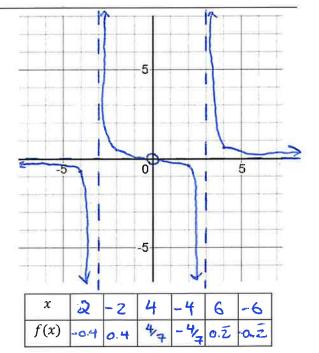
d)
$$h(x) = \frac{x^2}{x^3 - 9x} \rightarrow \frac{x^2}{x(x^2 - q)}$$

VA: x= ±3

HA: y=0

(x+3)(x-3)

Hole: (0,0)


D: x = 0, ±3

if x=0

x-1-d: None

youd None

Hole ad (0,0)

* Notice you can cross a Herizadal Asymptote as long as x is not approaching too.

See Website for Detailed Answer Key of the Remainder of the Questions

Extra Work Space