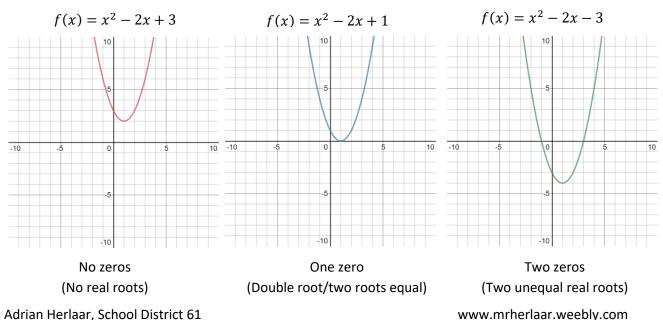
Section 4.3 – Solving Quadratics by Factoring and the Square Root Method

This Booklet Belongs to:	Block:	
Definition of a Quadratic Equation		
An equation that can be written in the form:		
Where $a, b, and c$ are Real Numbers with $a \neq 0$	$ax^2 + bx + c = 0$	


- The solutions of the quadratic equation $f(x) = ax^2 + bx + c = 0$ are called **zeros**, **roots**, **or solutions**
- The points where the graph crosses the x axis are real solutions, because f(x) is 0
- The x intercepts are called the real roots of the quadratic function
- A quadratic function can cross the x axis either **0**, **1**, or **2** times

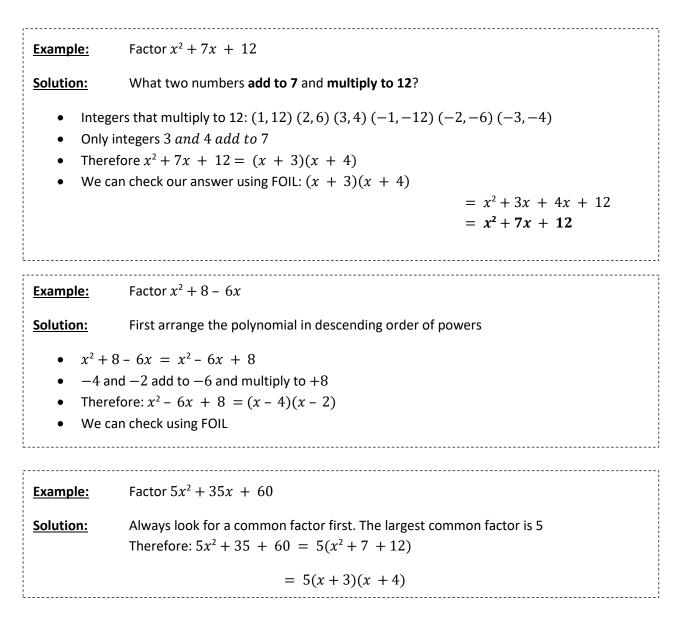
Real Zeros of a Quadratic Function

If f(x) is a quadratic function and c is a real zero of f(x), then the following statements are equivalent

- 1. x = c is a **zero** of the function f(x)
- 2. x = c is a **root** of the function f(x)
- 3. x = c is a **solution** of the equation f(x) = 0
- 4. (x c) is a factor of the quadratic equation f(x)
- 5. (c, 0) is an x intercept of teh graph of f(x)

Example 1:

Adrian Herlaar, School District 61


Factoring Quadratics in the Form $x^2 + bx + c$

Consider this: $(x + a)(x + b) = x^2 + bx + ax + ab$

 $x^{2} + (b + a)x + ab$

- By looking at this we see that:
 - The first term is the product of *x* and *x*
 - The **coefficient of the middle term** is the **sum** of *a* and *b*
 - The last term is the **product** of *a* and *b*
- This leads us to the general rule:

When factoring $x^2 + bx + c$, look for two factors of c, that multiply to the coefficient of the last term, and add to the coefficient of the middle term.

Example:Factor $-x^2 + 5x + 6$ Solution:First factor out -1, so that the coefficient of x^2 becomes +1.• So $-x^2 + 5x + 6$ becomes $-(x^2 - 5x - 6)$, now factor $(x^2 - 5x - 6)$ • -6 and 1 multiply to -6 and add to -5• Therefore $-x^2 + 5x + 6 = -(x^2 - 5x - 6)$ • Note the factors are: (x - 6)(x + 1) and -1

SUMMARY OF FACTORING POLYNOMIALS

- 1. Arrange the polynomial in descending order of powers
- 2. When the last term is positive, the factors of c are both positive, or both negative. If the middle term is positive, both integers are positive. If the middle term is negative, both integers are negative.

Example: $x^2 + 7x + 12 = (x + 4)(x + 3)$

- The last term is positive, and the middle term is positive, therefore the factors of 12 are both positive.
- Opposite if the middle term was negative and the last positive.
- 3. When the last term is negative, the factors of c have opposite signs. The larger numeric value takes the sign of the coefficient of the middle term.

Example: $x^2 - x - 6 = (x - 3)(x + 2)$

• The last term is negative, therefore the signs of the factor of 6 are opposite of each other, and since the middle term is negative the larger numeric value has a negative sign.

Example: $x^2 + 2x - 15 = (x + 5)(x - 3)$

• The last term is negative, therefore the signs of the factor of 15 are opposite of each other, and since the middle term is positive the larger numeric value has a positive sign.

Factoring Quadratics in the Form $ax^2 + bx + c$

- There are a number of ways to factor equations in this form
- It is my humble opinion that the one shown below works the most efficiently
- In the last section we factored $ax^2 + bx + c$ where a = 1. In this section a will have an integer value greater than 1.

The "AC" Method of Factoring

- The "AC" method is a technique used to factor trinomials
- A trinomial consists of three terms $(ax^2 + bx + c)$.

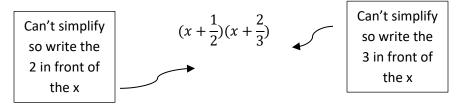
a b c1. $6x^2 + 7x + 2$

- 1. Multiply the **coefficient of the** *a* **term** with the **coefficient of the** *c* **term** and rewrite the polynomial with the starting term now x^2
 - So $6x^2 + 7x + 2$ becomes $x^2 + 7x + 12$

3.

a) Find two numbers **that multiply** to +12 and **add** to +7

These are: + 3 and + 4


b) Rewrite the factored form of the new version of the Polynomial

(x + 3)(x + 4)

c) Now divide the two factors by the original *a* term and simplify the fractions

$$(x + \frac{3}{6})(x + \frac{4}{6}) \rightarrow (x + \frac{1}{2})(x + \frac{2}{3})$$

d) If you are not left with a denominator then you are done. If a denominator remains, rewrite it in front of the x term.

4. Rewrite as the factored from: (2x + 1)(3x + 2)

This is the Factored Form.

Special Factors and Zero Product

• Factoring Perfect Square Trinomials

$0 = a^2 + 2ab + b^2 = (a + b)^2$	Example:	$x^2 + 8x + 16 = (x + 4)^2$
$0 = a^2 - 2ab + b^2 = (a - b)^2$	Example:	$x^2 - 8x + 16 = (x - 4)^2$
• Factoring a Difference of Squares		
$0 = a^2 - b^2 = (a + b)(a - b)$	Example:	$x^2 - 4 = (x - 2)(x + 2) = 0$
	Example:	$16x^2 - 25y^2 = (4x + 5y)(4x - 5y) = 0$
• The Zero Product		
$0 = a^2 + ab = a(a+b)$	Example:	$2x^2 + 6x = 0 \rightarrow 2x(x+3) = 0$
		So: $x = 0 \text{ or } x = -3$

Solving Using Factoring

Example:	Solve the equation $x^2 - x - 6 = 0$
Solution:	(x-3)(x+2) = 0
	(x-3) = 0 or $(x+2) = 0$
	x = 3 or x = -2
Example:	Solve the equation $3x^2 + 9x = 0$
Solution:	$3x^2 + 9x = 0 \rightarrow 3x(x+3) = 0$
	3x = 0 or $(x + 3) = 0$
	x = 0 or x = -3
Example:	Solve the equation $6x^2 - 7x - 5 = 0$
Solution:	$6x^2 - 7x - 5 = 0 \rightarrow x^2 - 7x - 30 = 0$
	$(x-10)(x+3) = 0 \qquad \to \qquad \left(x - \frac{10}{6}\right)\left(x + \frac{3}{6}\right) = 0$
	$\left(x-\frac{5}{3}\right)\left(x+\frac{1}{2}\right)=0 \qquad \rightarrow \qquad x=\frac{5}{3} \qquad or \qquad x=-\frac{1}{2}$
	[]

Example:	Solve the equation $x(3x + 1) = 2$	
<u>Solution:</u>	x(3x+1) = 2 $3x^{2} + x - 2 = 0 \rightarrow x^{2} + x - 6$ $\left(x + \frac{3}{3}\right)\left(x - \frac{2}{3}\right) = 0 \qquad \rightarrow$	$= 0 \rightarrow (x+3)(x-2)$
Example:	$\frac{x}{x-5} - \frac{3}{x+1} = \frac{30}{x^2 - 4x - 5}$	
Solution:		
$\left \frac{x}{x-5} - \frac{3}{x+1} \right $	$\frac{1}{x^2 - 4x - 5}$	Factor the denominators
$\frac{x}{x-5} - \frac{3}{x+1}$	$\frac{30}{(x-5)(x+1)}$	 Identify LCM In this case: (x - 5)(x + 1)
(x-5)(x+1)	$1)\left[\frac{x}{x-5} - \frac{3}{x+1} = \frac{30}{(x-5)(x+1)}\right]$	 Multiply each term by the LCM
(x+1)x-3	(x-5) = 30	• Reduce
$x^2 + x - 3x $	+15 - 30 = 0	• Simplify
$x^2 - 2x - 15$	$= 0 \rightarrow (x-5)(x+3)$	• Factor
x = 5 or	<i>x</i> = -3	• Solve
• The d	finished inset your answers into the o r enominator cannot equal zero when yo his case reject $x = 5$	r iginal equation to make sure they are valid ou plug it in

Solving Quadratics Using the Square Root Method

- The factor method is definitely the most efficient method of solving quadratics
- But not all quadratics can be factored easily of at all
- What we get are two methods depending on the situation
 - The Square Root Method
 - The Quadratic Equation
- The square root method in mainly used when b = 0 in the equation $ax^2 + bx + c = 0$
- Isolate the x^2 on the left side and square root the other side

Example:

$x^2 - 16 = 0$		$x^2 - 16 = 0$
(x+4)(x-4)	or	$x^2 = 16$
x - 4 = 0 or x + 4 = 0		$\sqrt{x^2} = \pm \sqrt{16}$
x = 4 or x = -4		$x = \pm 4$

The procedure on the right is the SQUARE ROOT METHOD

Solving a Quadratic Equation of the form $ax^2 + c = 0$

Step 1: Isolate the x^2 on the left side of the equation and the constant on the right **Step 2:** Take the **square root of both sides**, the square root of the **constant has to be** \pm **Step 3:** Simplify if possible **Step 4:** Check the solution in the original equation

The Square Root Property is defined as follows:

The Square Root Property

The equation $x^2 = n$ has exactly 2 real solutions

 $x = \sqrt{n}$ and $x = -\sqrt{n}$ if n > 0. The solution are written $x = \pm n$

$$x = 0$$
 if $n = 0$

 $x = \emptyset$ if n < 0 (we can't take the square root of a negative)

Example:	Solve $4x^2 - 9 = 0$	
Solution:	$4x^2 = 9$	- Add nine to both sides
	$x^2 = \frac{9}{4}$	- Divide both sides by 4
	$x = \pm \sqrt{\frac{9}{4}} = \pm \frac{3}{2}$	- Square Root both sides (remember \pm)
		Solutions are: $\frac{3}{2}and - \frac{3}{2}$
Example:	Solve $2x^2 + 7 = 0$	
Solution:	$2x^2 = -7$	- Subtract seven from both sides
	$x^2 = -\frac{7}{2}$	- Divide both sides by 2
	$x = \pm \sqrt{-\frac{7}{2}} = \emptyset$	- Ø denotes the ' <i>empty set</i> '
		- We can't square root a negative Solutions are: <i>None</i>
Example:	Solve $4x^2 - 7 = 0$	
Solution:	$4x^2 = 7$	- Add seven to both sides
	$x^2 = \frac{7}{4}$	- Divide both sides by 4
	$x = \pm \sqrt{\frac{7}{4}} = \pm \frac{\sqrt{7}}{2}$	- Square Root both sides, and simplify
		Solutions are: $\frac{\sqrt{7}}{2}and - \frac{\sqrt{7}}{2}$
Example:	Solve $(x + 2)^2 = 10$	
Solution:	$(x+2) = \pm \sqrt{10}$	- Square Root both sides first, the 'squared term' is isolated to start
	$x = -2 \pm \sqrt{10}$	- Subtract both sides by 2
		Solutions are: $-2 + \sqrt{10}$ and $-2 - \sqrt{10}$

Example:	Solve $9(x - 1)^2 = 13$	
Solution:	$(x-1)^2 = \frac{13}{9}$	- Divide both sides by 9 to isolate the 'squared term'
	$x-1 = \pm \sqrt{\frac{13}{9}}$	- Square Root both sides
	$x = 1 \pm \sqrt{\frac{13}{9}}$	- Add 1 to both sides
	$x = 1 \pm \frac{\sqrt{13}}{3}$	- Simplify Solutions are: $1 + \frac{\sqrt{13}}{3}$ and $1 - \frac{\sqrt{13}}{3}$
Example:	Solve $4(x + 3)^2 + 11 =$	0
Solution:	$(x+3)^2 = -\frac{11}{4}$	- Subtract 11 and Divide both sides by 4 to isolate the 'squared term'
	$x+3 = \pm \sqrt{-\frac{11}{4}}$	- Square Root both sides
	$x = \emptyset$	- Can't Square Root a Negative
		Solutions are: None
	L	

Section 4.3 – Practice Problems

Find the x - intercepts by factoring the following equations.

1. $y = x^2 - 3x - 4$	$2. y = x^2 + x - 6$
3. $y = -x^2 + 4$	4. $y = -\frac{1}{2}x^2 - x + 4$
	1
5. $y = 2x^2 + 5x - 3$	6. $y = -\frac{1}{3}x^2 + 3$

Solve the following equations. Check your solutions to make sure they are correct

7.
$$2x(4x-3) = 0$$

8. $(0.25y-2)(0.2y+1) = 0$

9. $x^2 = -x$	10. $x^2 + 1 = 0$
11. $4y^2 = y$	12. $3x^2 - x = 0$
13. $x^2 + 5x + 6 = 0$	14. $x^2 - 4x + 3 = 0$
15. $y^2 + y - 12 = 0$	16. $z^3 - 16z = 0$

17. $z(z-5) = -4$	18. $(x - 12)(x + 1) = -40$
19. $(y-6)(y+1) = -10$	20. $z^3 - z^2 = 6z$
19. (y - 6)(y + 1) = -10	$20. 2^{-} - 2^{-} = 62$
21. $x^3 - 3x = 2x^2$	$22. \ \frac{x^2}{18} + \frac{x}{6} = 1$

23. $(2x-1)^2 = 16$	24. $(3x+8)(x-1) = (x-1)(x+3)$
25. $(2y)^2 + (y+5)^2 = (2y+4)^2$	26. $6x^2(3x-1) - x(3x-1) = 2(3x-1)$

27.
$$\frac{1}{x} + \frac{3}{x-2} = \frac{5}{8}$$
 28. $\frac{4}{5} + y = \frac{4y-50}{5y-25}$

29.
$$\frac{4}{x^2 - 4} - \frac{1}{x - 2} = 1$$

30. $\frac{1}{x - 3} - \frac{12}{x^2 - 9} = 1$

Complete the square and solve using the square root method, give exact answers

31. $x^2 + 6x = -5$	32. $y^2 - 5y + 3 = 0$
51. x + 0x5	52. y - 5y + 5 = 0
$33. \ z^2 - 8z + 3 = 0$	$34. \ x^2 - 2x - 1 = 0$
$33. \ 2^{-} - 82 + 3 = 0$	34. $x^2 - 2x - 1 = 0$

35. $y^2 + 4y + 2 = 0$	36. $z^2 + 2z + 7 = 0$
37. $5x^2 - 3x = 1$	38. $3x^2 - x = 3$
37. $5x^2 - 3x = 1$	38. $3x^2 - x = 3$
37. $5x^2 - 3x = 1$	38. $3x^2 - x = 3$
$37.\ 5x^2 - 3x = 1$	38. $3x^2 - x = 3$
37. $5x^2 - 3x = 1$	38. $3x^2 - x = 3$
37. $5x^2 - 3x = 1$	38. $3x^2 - x = 3$
$\overline{37.5x^2 - 3x} = 1$	38. $3x^2 - x = 3$
$37.5x^2 - 3x = 1$	38. $3x^2 - x = 3$

39. $3x^2 = -8x - 2$

40.
$$3x^2 = 6x + 2$$

Section 4.3 – Answer Key

1. $(4,0)$ and $(-1,0)$	21. $x = 0, x = 3, and x = -1$
2. $(-3,0)$ and $(2,0)$	22. $x = -6$ and $x = 3$
3. $(-2,0)$ and $(2,0)$	23. $x = \frac{5}{2}$ and $x = -\frac{3}{2}$
4. (-4,0) and (2,0)	24. $x = -\frac{5}{2}$ and $x = 1$
5. $(-3,0)$ and $(\frac{1}{2},0)$	25. $y = 3$
6. $(-3,0)$ and $(3,0)$	26. $x = \frac{2}{3}$ and $x = -\frac{1}{2}$ and $x = \frac{1}{3}$
7. $x = 0$ and $x = \frac{3}{4}$	27. $x = 8$ and $x = \frac{2}{5}$
8. $y = 8$ and $y = -5$	28. $y = 2$ and $y = 3$
9. $x = 0$ and $x = -1$	29. $x = -3$
10. No Solution	30. $x = 0$ and $x = 1$
11. $y = 0$ and $y = \frac{1}{4}$	31. $x = -1$ and $x = -5$
12. $x = 0$ and $x = \frac{1}{3}$	32. $y = \frac{5+\sqrt{13}}{2}$ and $y = \frac{5-\sqrt{13}}{2}$
13. $x = -3$ and $x = -2$	33. $z = 4 + \sqrt{13}$ and $z = 4 - \sqrt{13}$
14. $x = 1$ and $x = 3$	34. $x = 1 + \sqrt{2}$ and $x = 1 - \sqrt{2}$
15. $y = -4$ and $y = 3$	35. $y = -2 + \sqrt{2}$ and $y = -2 - \sqrt{2}$
16. $z = 0$ and $z = 4$ and $z = -4$	36. No Solution
17. $z = 4$ and $z = 1$	37. $x = \frac{3+\sqrt{29}}{10}$ and $x = \frac{3-\sqrt{29}}{10}$
18. $x = 4$ and $x = 7$	38. $x = \frac{1+\sqrt{37}}{6}$ and $x = \frac{1-\sqrt{37}}{6}$
19. $y = 1$ and $y = 4$	39. $x = \frac{-4 + \sqrt{10}}{3}$ and $x = \frac{-4 - \sqrt{10}}{3}$
20. $z = 0, z = 3, and z = -2$	40. $x = 1 + \sqrt{\frac{5}{3}}$ and $x = 1 - \sqrt{\frac{5}{3}}$
	N 3 N 3