Section 4.3 - Solving Quadratics by Factoring and the Square Root Method

This Booklet Belongs to:

Block:

Definition of a Quadratic Equation

An equation that can be written in the form:

$$
a x^{2}+b x+c=0
$$

Where a, b, and c are Real Numbers with $a \neq 0$

- The solutions of the quadratic equation $f(x)=a x^{2}+b x+c=0$ are called zeros, roots, or solutions
- The points where the graph crosses the \boldsymbol{x}-axis are real solutions, because $\boldsymbol{f}(\boldsymbol{x})$ is $\mathbf{0}$
- The \boldsymbol{x} - intercepts are called the real roots of the quadratic function
- A quadratic function can cross the x-axis either $\mathbf{0}, \mathbf{1}$, or 2 times

Real Zeros of a Quadratic Function

If $f(x)$ is a quadratic function and c is a real zero of $f(x)$, then the following statements are equivalent

1. $x=c$ is a zero of the function $f(x)$
2. $x=c$ is a root of the function $f(x)$
3. $x=c$ is a solution of the equation $f(x)=0$
4. $(x-c)$ is a factor of the quadratic equation $f(x)$
5. $(c, 0)$ is an x - intercept of teh graph of $f(x)$

Example 1:

$$
f(x)=x^{2}-2 x+3
$$

No zeros
(No real roots)

$$
f(x)=x^{2}-2 x+1
$$

One zero
(Double root/two roots equal)
$f(x)=x^{2}-2 x-3$

Two zeros (Two unequal real roots)

Factoring Quadratics in the Form $x^{2}+b x+c$

Consider this: $(x+a)(x+b)=x^{2}+b x+a x+a b$

$$
x^{2}+(b+a) x+a b
$$

- By looking at this we see that:
- The first term is the product of x and x
- The coefficient of the middle term is the sum of a and b
- The last term is the product of a and b
- This leads us to the general rule:

When factoring $x^{2}+b x+c$, look for two factors of c, that multiply to the coefficient of the last term, and add to the coefficient of the middle term.

Example: \quad Factor $x^{2}+7 x+12$

Solution: \quad What two numbers add to 7 and multiply to $\mathbf{1 2}$

- Integers that multiply to $12:(1,12)(2,6)(3,4)(-1,-12)(-2,-6)(-3,-4)$
- Only integers 3 and 4 add to 7
- Therefore $x^{2}+7 x+12=(x+3)(x+4)$
- We can check our answer using FOIL: $(x+3)(x+4)$

$$
\begin{aligned}
& =x^{2}+3 x+4 x+12 \\
& =x^{2}+\mathbf{7 x}+\mathbf{1 2}
\end{aligned}
$$

Example: \quad Factor $x^{2}+8-6 x$

Solution: \quad First arrange the polynomial in descending order of powers

- $x^{2}+8-6 x=x^{2}-6 x+8$
- -4 and -2 add to -6 and multiply to +8
- Therefore: $x^{2}-6 x+8=(x-4)(x-2)$
- We can check using FOIL

Example: \quad Factor $5 x^{2}+35 x+60$
Solution: \quad Always look for a common factor first. The largest common factor is 5
Therefore: $5 x^{2}+35+60=5\left(x^{2}+7+12\right)$

$$
=5(x+3)(x+4)
$$

Example: \quad Factor $-x^{2}+5 x+6$

Solution: \quad First factor out -1 , so that the coefficient of x^{2} becomes +1 .

- So $-x^{2}+5 x+6$ becomes $-\left(x^{2}-5 x-6\right)$, now factor $\left(x^{2}-5 x-6\right)$
- -6 and 1 multiply to -6 and add to -5
- Therefore $-x^{2}+5 x+6=-\left(x^{2}-5 x-6\right)=-(x-6)(x+1)$
- Note the factors are: $(x-6)(x+1)$ and -1

SUMMARY OF FACTORING POLYNOMIALS

1. Arrange the polynomial in descending order of powers
2. When the last term is positive, the factors of c are both positive, or both negative. If the middle term is positive, both integers are positive. If the middle term is negative, both integers are negative.

Example: $\quad x^{2}+7 x+12=(x+4)(x+3)$

- The last term is positive, and the middle term is positive, therefore the factors of 12 are both positive.
- Opposite if the middle term was negative and the last positive.

3. When the last term is negative, the factors of c have opposite signs. The larger numeric value takes the sign of the coefficient of the middle term.

Example: $\quad x^{2}-x-6=(x-3)(x+2)$

- The last term is negative, therefore the signs of the factor of 6 are opposite of each other, and since the middle term is negative the larger numeric value has a negative sign.

Example: $\quad x^{2}+2 x-15=(x+5)(x-3)$

- The last term is negative, therefore the signs of the factor of 15 are opposite of each other, and since the middle term is positive the larger numeric value has a positive sign.

Factoring Quadratics in the Form $a x^{2}+b x+c$

- There are a number of ways to factor equations in this form
- It is my humble opinion that the one shown below works the most efficiently
- In the last section we factored $a x^{2}+b x+c$ where $\boldsymbol{a}=\mathbf{1}$. In this section \boldsymbol{a} will have an integer value greater than 1.

The "AC" Method of Factoring

- The "AC" method is a technique used to factor trinomials
- A trinomial consists of three terms $\left(a x^{2}+b x+c\right)$.
$a \quad b \quad c$

1. $6 x^{2}+7 x+2$
2. Multiply the coefficient of the \boldsymbol{a} term with the coefficient of the \boldsymbol{c} term and rewrite the polynomial with the starting term now x^{2}

So

$$
6 x^{2}+7 x+2 \quad \text { becomes }
$$

$$
x^{2}+7 x+12
$$

3.

a) Find two numbers that multiply to +12 and add to +7

$$
\text { These are: } \quad+3 \text { and }+4
$$

b) Rewrite the factored form of the new version of the Polynomial

$$
(x+3)(x+4)
$$

c) Now divide the two factors by the original \boldsymbol{a} term and simplify the fractions

$$
\left(x+\frac{3}{6}\right)\left(x+\frac{4}{6}\right) \quad \rightarrow \quad\left(x+\frac{1}{2}\right)\left(x+\frac{2}{3}\right)
$$

d) If you are not left with a denominator then you are done. If a denominator remains, rewrite it in front of the x term.
$\left.\begin{array}{|c|c|}\hline \begin{array}{c}\text { Can't simplify } \\ \text { so write the } \\ 2 \text { in front of } \\ \text { the } \mathrm{x}\end{array}\end{array}\right) \quad\left(x+\frac{1}{2}\right)\left(x+\frac{2}{3}\right)$
4. Rewrite as the factored from: $(2 x+1)(3 x+2)$

This is the Factored Form.

Special Factors and Zero Product

- Factoring Perfect Square Trinomials
$0=a^{2}+2 a b+b^{2}=(a+b)^{2}$
Example:
$x^{2}+8 x+16=(x+4)^{2}$
$0=a^{2}-2 a b+b^{2}=(a-b)^{2}$
Example: $\quad x^{2}-8 x+16=(x-4)^{2}$
- Factoring a Difference of Squares
$0=a^{2}-b^{2}=(a+b)(a-b)$

$$
\begin{array}{ll}
\text { Example: } & x^{2}-4=(x-2)(x+2)=0 \\
\text { Example: } & 16 x^{2}-25 y^{2}=(4 x+5 y)(4 x-5 y)=0
\end{array}
$$

- The Zero Product
$0=a^{2}+a b=a(a+b)$
Example: $\quad 2 x^{2}+6 x=0 \rightarrow 2 x(x+3)=0$
So: $\quad x=0$ or $x=-3$

Solving Using Factoring

Example: \quad Solve the equation $x^{2}-x-6=0$
Solution:

$$
\begin{gathered}
(x-3)(x+2)=0 \\
(x-3)=0 \quad \text { or } \quad(x+2)=0 \\
x=3 \quad \text { or } \quad x=-2
\end{gathered}
$$

Example: \quad Solve the equation $3 x^{2}+9 x=0$
Solution:

$$
\begin{gathered}
3 x^{2}+9 x=0 \quad \rightarrow \quad 3 x(x+3)=0 \\
3 x=0 \quad \text { or } \quad(x+3)=0 \\
x=0 \quad \text { or } \quad x=-3
\end{gathered}
$$

Example: \quad Solve the equation $6 x^{2}-7 x-5=0$
Solution:

$$
\begin{array}{cl}
6 x^{2}-7 x-5=0 & \rightarrow \quad x^{2}-7 x-30=0 \\
(x-10)(x+3)=0 & \rightarrow \quad\left(x-\frac{10}{6}\right)\left(x+\frac{3}{6}\right)=0 \\
\left(x-\frac{5}{3}\right)\left(x+\frac{1}{2}\right)=0 & \rightarrow \quad x=\frac{5}{3} \quad \text { or } \quad x=-\frac{1}{2}
\end{array}
$$

Example: \quad Solve the equation $x(3 x+1)=2$
Solution:

$$
\left.\begin{array}{cccc}
x(3 x+1)=2 & \rightarrow & 3 x^{2}+x=2 \\
3 x^{2}+x-2=0 & \rightarrow & x^{2}+x-6=0 & \rightarrow
\end{array}(x+3)(x-2)\right)
$$

Example: $\quad \frac{x}{x-5}-\frac{3}{x+1}=\frac{30}{x^{2}-4 x-5}$

Solution:

$$
\begin{aligned}
& \frac{x}{x-5}-\frac{3}{x+1}=\frac{30}{x^{2}-4 x-5} \\
& \frac{x}{x-5}-\frac{3}{x+1}=\frac{30}{(x-5)(x+1)} \\
& (x-5)(x+1)\left[\frac{x}{x-5}-\frac{3}{x+1}=\frac{30}{(x-5)(x+1)}\right] \\
& (x+1) x-3(x-5)=30 \\
& x^{2}+x-3 x+15-30=0 \\
& x^{2}-2 x-15=0 \quad \rightarrow \quad(x-5)(x+3) \\
& x=5 \quad \text { or } \quad x=-3 \\
& \text { - Factor the denominators } \\
& \text { - Identify LCM } \\
& \text { - In this case: }(x-5)(x+1) \\
& \text { - Multiply each term by the } \\
& \text { LCM } \\
& \text { - Reduce } \\
& \text { - Simplify } \\
& \text { - Factor } \\
& \text { - Solve }
\end{aligned}
$$

- When finished inset your answers into the original equation to make sure they are valid
- The denominator cannot equal zero when you plug it in
- So it this case reject $\boldsymbol{x}=5$

Solving Quadratics Using the Square Root Method

- The factor method is definitely the most efficient method of solving quadratics
- But not all quadratics can be factored easily of at all
- What we get are two methods depending on the situation
- The Square Root Method
- The Quadratic Equation
- The square root method in mainly used when $b=0$ in the equation $a x^{2}+b x+c=0$
- Isolate the x^{2} on the left side and square root the other side

Example:

$$
\begin{array}{ll}
x^{2}-16=0 & \\
(x+4)(x-4) & \text { or } \\
x-4=0 \text { or } x+4=0 & \\
x=4 \text { or } x=-4 & x^{2}=16 \\
x & \sqrt{x^{2}}= \pm \sqrt{16} \\
x= \pm 4
\end{array}
$$

The procedure on the right is the SQUARE ROOT METHOD

Solving a Quadratic Equation of the form $a x^{2}+c=0$

Step 1: Isolate the \boldsymbol{x}^{2} on the left side of the equation and the constant on the right
Step 2: Take the square root of both sides, the square root of the constant has to be \pm
Step 3: Simplify if possible
Step 4: Check the solution in the original equation

The Square Root Property is defined as follows:

The Square Root Property

The equation $x^{2}=n$ has exactly 2 real solutions

$$
\begin{gathered}
x=\sqrt{n} \text { and } x=-\sqrt{n} \text { if } n>0 . \text { The solution are written } x= \pm n \\
x=0 \text { if } n=0 \\
x=\emptyset \text { if } n<0 \text { (we can't take the square root of a negative) }
\end{gathered}
$$

Example: \quad Solve $4 x^{2}-9=0$
Solution:

$$
\begin{array}{ll}
4 x^{2}=9 & \text { - Add nine to both sides } \\
x^{2}=\frac{9}{4} & \text { - Divide both sides by } 4 \\
x= \pm \sqrt{\frac{9}{4}}= \pm \frac{3}{2} & \text { - Square Root both sides (remember } \pm \text {) }
\end{array}
$$

Solutions are: $\frac{3}{2}$ and $-\frac{3}{2}$

Example: \quad Solve $2 x^{2}+7=0$

Solution: | | $2 x^{2}=-7$ | - Subtract seven from both sides |
| :--- | :--- | :--- |
| | $x^{2}=-\frac{7}{2}$ | - Divide both sides by 2 |
| | $x= \pm \sqrt{-\frac{7}{2}}=\varnothing$ | $-\emptyset$ denotes the 'empty set' |
| | | -We can't square root a negative \quad Solutions are: None |

Example: \quad Solve $4 x^{2}-7=0$

Solution:

$$
\begin{array}{ll}
4 x^{2}=7 & \text { - Add seven to both sides } \\
x^{2}=\frac{7}{4} & \text { - Divide both sides by } 4 \\
x= \pm \sqrt{\frac{7}{4}}= \pm \frac{\sqrt{7}}{2} & \text { - Square Root both sides, and simplify } \\
& \\
&
\end{array}
$$

Example: \quad Solve $(x+2)^{2}=10$

Solution:

$$
\begin{array}{ll}
(x+2)= \pm \sqrt{10} & \text { - Square Root both sides first, the 'squared term' is isolated to start } \\
x=-2 \pm \sqrt{10} & \text { - Subtract both sides by } 2
\end{array}
$$

Solutions are: $\mathbf{- 2}+\sqrt{\mathbf{1 0}}$ and $-2-\sqrt{\mathbf{1 0}}$

Example: \quad Solve $9(x-1)^{2}=13$

Solution:

$$
\begin{array}{ll}
(x-1)^{2}=\frac{13}{9} & \text { - Divide both sides by } 9 \text { to isolate the 'squared term' } \\
x-1= \pm \sqrt{\frac{13}{9}} & \text { - Square Root both sides } \\
x=1 \pm \sqrt{\frac{13}{9}} & \text { - Add } 1 \text { to both sides } \\
x=1 \pm \frac{\sqrt{13}}{3} & \text { - Simplify }
\end{array}
$$

Example: \quad Solve $4(x+3)^{2}+11=0$

Solution:

$$
\begin{array}{ll}
(x+3)^{2}=-\frac{11}{4} & \text { - Subtract } 11 \text { and Divide both sides by } 4 \text { to isolate the 'squared term' } \\
x+3= \pm \sqrt{-\frac{11}{4}} & \text { - Square Root both sides } \\
x=\emptyset & \text { - Can't Square Root a Negative }
\end{array}
$$

Section 4.3 - Practice Problems

Find the x - intercepts by factoring the following equations.

1. $y=x^{2}-3 x-4$
2. $y=x^{2}+x-6$
3. $y=-x^{2}+4$
4. $y=-\frac{1}{2} x^{2}-x+4$
5. $y=2 x^{2}+5 x-3$
6. $y=-\frac{1}{3} x^{2}+3$

Solve the following equations. Check your solutions to make sure they are correct
7. $2 x(4 x-3)=0$
8. $(0.25 y-2)(0.2 y+1)=0$
9. $x^{2}=-x$
11. $4 y^{2}=y$
13. $x^{2}+5 x+6=0$
14. $x^{2}-4 x+3=0$
15. $y^{2}+y-12=0$
16. $z^{3}-16 z=0$
17. $z(z-5)=-4$
18. $(x-12)(x+1)=-40$
19. $(y-6)(y+1)=-10$
20. $z^{3}-z^{2}=6 z$
21. $x^{3}-3 x=2 x^{2}$
22. $\frac{x^{2}}{18}+\frac{x}{6}=1$
23. $(2 x-1)^{2}=16$
24. $(3 x+8)(x-1)=(x-1)(x+3)$
25. $(2 y)^{2}+(y+5)^{2}=(2 y+4)^{2}$
26. $6 x^{2}(3 x-1)-x(3 x-1)=2(3 x-1)$
27. $\frac{1}{x}+\frac{3}{x-2}=\frac{5}{8}$
28. $\frac{4}{5}+y=\frac{4 y-50}{5 y-25}$
29. $\frac{4}{x^{2}-4}-\frac{1}{x-2}=1$
30. $\frac{1}{x-3}-\frac{12}{x^{2}-9}=1$

Complete the square and solve using the square root method, give exact answers
31. $x^{2}+6 x=-5$

- $x^{2}+6 x=-5$

33. $z^{2}-8 z+3=0$
34. $y^{2}+4 y+2=0$
35. $5 x^{2}-3 x=1$
36. $z^{2}+2 z+7=0$
37. $3 x^{2}=-8 x-2$
38. $3 x^{2}=6 x+2$

Section 4.3 - Answer Key

1. $(4,0)$ and $(-1,0)$	21. $x=0, x=3$, and $x=-1$
2. $(-3,0)$ and $(2,0)$	22. $x=-6$ and $x=3$
3. $(-2,0)$ and $(2,0)$	23. $x=\frac{5}{2}$ and $x=-\frac{3}{2}$
4. $(-4,0)$ and $(2,0)$	24. $x=-\frac{5}{2}$ and $x=1$
5. $(-3,0)$ and $\left(\frac{1}{2}, 0\right)$	25. $y=3$
6. $(-3,0)$ and $(3,0)$	26. $x=\frac{2}{3}$ and $x=-\frac{1}{2}$ and $x=\frac{1}{3}$
7. $x=0$ and $x=\frac{3}{4}$	27. $x=8$ and $x=\frac{2}{5}$
8. $y=8$ and $y=-5$	28. $y=2$ and $y=3$
9. $x=0$ and $x=-1$	29. $x=-3$
10. No Solution	30. $x=0$ and $x=1$
11. $y=0$ and $y=\frac{1}{4}$	31. $x=-1$ and $x=-5$
12. $x=0$ and $x=\frac{1}{3}$	32. $y=\frac{5+\sqrt{13}}{2}$ and $y=\frac{5-\sqrt{13}}{2}$
13. $x=-3$ and $x=-2$	33. $z=4+\sqrt{13}$ and $z=4-\sqrt{13}$
14. $x=1$ and $x=3$	34. $x=1+\sqrt{2}$ and $x=1-\sqrt{2}$
15. $y=-4$ and $y=3$	35. $y=-2+\sqrt{2}$ and $y=-2-\sqrt{2}$
16. $z=0$ and $z=4$ and $z=-4$	36. No Solution
17. $z=4$ and $z=1$	37. $x=\frac{3+\sqrt{29}}{10}$ and $x=\frac{3-\sqrt{29}}{10}$
18. $x=4$ and $x=7$	38. $x=\frac{1+\sqrt{37}}{6}$ and $x=\frac{1-\sqrt{37}}{6}$
19. $y=1$ and $y=4$	39. $x=\frac{-4+\sqrt{10}}{3}$ and $x=\frac{-4-\sqrt{10}}{3}$
20. $z=0, z=3$, and $z=-2$	40. $x=1+\sqrt{\frac{5}{3}}$ and $x=1-\sqrt{\frac{5}{3}}$

