Section 4.3 – Rational Functions

• We solved Rationals in PC 11. We spent time identifying Domain Restrictions, but now we will see what that actually translates to when we try to graph these things.

A Rational Function is a function of the form:

$$f(x) = \frac{g(x)}{h(x)}$$

g(x) and h(x) are both polynomials where $h(x) \neq 0$.

Examples:	The difference between a Function and Expression is the Equals Sign			
a)	$\frac{(x-4)}{(x+2)}$	This is a Rational Expression	Numerator/Denominator are Polynomials	
b)	$y = \frac{(x-4)}{(x+2)}$	This is a Rational Function	Numerator/Denominator are Polynomials	
c)	$y = 4x^3 + 2x^2 - 4x + 5$	This is a Rational Function	Numerator/Denominator are Polynomials	
d)	$y=\frac{5x-7}{\sqrt{x+5}}$	This is NOT a Rational Function	Denominator is 1; still both Polynomials	

What about the Domain Restrictions on the Denominator?

- Well h(x) cannot be 0, any values that makes that happen give us either Asymptotes or Holes
- An asymptote is a line that your graph will get infinitely close to touching, but never will
- There are both Vertical and Horizontal asymptotes
- Vertical Asymptotes are literally untouchable
- Horizontal Asymptotes can be crossed in certain situations (you'll see this later)

Definition of an Asymptote An asymptote of a graph is a vertical or horizontal line that a part of the graph gets infinity close to, but never touches.

Example 1: Graph $f(x) = \frac{6}{x}$

Solution 1: We are not allowed to have a Denominator of 0, so $x \neq 0$, that is our Asymptote

- Since the asymptote is the vertical line x = 0 (the y axis), the graph will approach but never touch
- There is a horizontal asymptote, the line y = 0, (the x - axis) we will see the behaviour and discuss these further later
- Create a table of values and plot points on either side of the vertical asymptote.

Depending on the complexity of the Denominator, we may need to factor it to find all of the zeros

Example 2: What are the Vertical Asymptotes of:
$$f(x) = \frac{x}{x^2 - 9}$$

Solution 2: We are not allowed to have a Denominator of 0, so we need to factor our denominator

- $x^2 9$ is a difference of squares
- It factors to: (x-3)(x+3)
- So $x \neq 3$ and $x \neq -3$ There are Vertical Asymptotes at both of these points
- The lines x = 3 and x = -3 are displayed using dashes

Example 3: What are the Vertical Asymptotes of: $f(x) = \frac{2x+3}{x^3-4x}$

Solution 3: We are not allowed to have a Denominator of 0, so we need to factor our denominator

- $x^3 4x$ is a difference of squares once we have factored out the x
- It factors to: $x(x^2 4) \rightarrow x(x 2)(x + 2)$
- So $x \neq 0$ and $x \neq 2$ and $x \neq -2$, There are Vertical Asymptotes at all three of these points
- The lines x = 0 and x = 2 and x = -2 are displayed using dashes

Horizontal Asymptotes

- Horizontal asymptotes are also lines that cannot be touched (in most situations)
- But they have one very special difference....
- Horizontal Asymptotes occur as our graphs approach infinity in both directions on the x axis

 $x \to \infty$ and $x \to -\infty$

• What this means is that horizontal asymptotes can be crossed, just not as we approach $\pm\infty$

We can look at the various scenarios of Rational Functions and Horizontal Asymptotes with respect to the degree of the Polynomials in the Numerator and Denominator.

Horizontal Asymptotes of Rational Functions

Consider the Rational Function

$$f(x) = \frac{g(x)}{h(x)}$$

- If the **Degree of** g(x) > h(x), then the **Horizontal Asymptote** is the **line** y = 0 (x axis)
- If the Degree of g(x) = h(x), then the ratio of the leading coefficients is the Horizontal Asymptote
- If the **Degree of** g(x) < h(x), then there is **NO Horizontal Asymptote**
- **Example 4:** Determine, if it exists, the horizontal asymptotes of the $f(x) = \frac{4x}{2x-1}$
- **Solution 4:** Rules are helpful, but if you can't remember them, then what. As you'll see in calculus **dividing each term** by the **variable** of the **highest power in the denominator** gives us the asymptote

$$\frac{4x}{2x-1} \rightarrow \frac{\frac{4x}{x}}{\frac{2x}{x}-\frac{1}{x}}$$
And we are interested in the **behaviour** of the function as:
 $x \rightarrow \infty$
Cancel where we can and then **substitute** ∞ for any
remaining $x - values$

$$\frac{4}{2-\frac{1}{x}} \rightarrow \frac{4}{2-\frac{1}{\infty}} \qquad \boxed{\frac{1}{\infty} = is \ a \ tiny \ small \ number}}_{\text{So, we say: } \frac{1}{\infty} = 0}$$

$$\rightarrow \frac{4}{2-\frac{1}{\infty}} \rightarrow \frac{4}{2-0} = 2$$
The Horizontal Asymptote is the line $y = 2$,
you'll notice it is the ratio of the leading
coefficients. Rule 2.

Example 5: Determine, if it exists, the horizontal asymptotes of the $f(x) = \frac{3-4x}{x^2+2x-1}$

Solution 5: Divide each term by the variable of the **highest power in the denominator**

$$\frac{3-4x}{x^2+2x-1} \to \frac{\frac{3}{x^2}-\frac{4x}{x^2}}{\frac{x^2}{x^2}+\frac{2x}{x^2}-\frac{1}{x^2}} \to \frac{\frac{3}{x^2}-\frac{4}{x}}{1+\frac{2}{x}-\frac{1}{x^2}} \to \frac{\frac{3}{\infty^2}-\frac{4}{\infty}}{1+\frac{2}{\infty}-\frac{1}{\infty^2}}$$

$$\frac{\frac{3}{\infty^2} - \frac{4}{\infty}}{1 + \frac{2}{\infty} - \frac{1}{\infty^2}} \rightarrow \frac{0 - 0}{1 + 0 - 0} = \frac{0}{1} = \mathbf{0}$$
The Horizontal Asymptote is the line $y = \mathbf{0}$, (the $x - axis$). Rule 1.

Example 6: Determine, if it exists, the horizontal asymptotes of the $f(x) = \frac{x^2 + 5x - 6}{2x - 1}$

Solution 6: Divide each term by the variable of the highest power in the denominator

$$\frac{x^2 + 5x - 6}{2x - 1} \rightarrow \frac{\frac{x^2}{x} + \frac{5x}{x} - \frac{6}{x}}{\frac{2x}{x} - \frac{1}{x}} \rightarrow \frac{x + 5 - \frac{6}{x}}{2 - \frac{1}{x}} \rightarrow \frac{\omega + 5 - \frac{6}{\omega}}{2 - \frac{1}{\omega}}$$

$$\frac{\infty + 5 - \frac{6}{\infty}}{2 - \frac{1}{\infty}} \rightarrow \frac{\infty + 5 - 0}{2 - 0} = \frac{\infty}{2} = \infty$$
The Horizontal Asymptote DOES NOT EXIST,
Rule 3.

- Remembering the rules helps simplify this process, but understanding the behaviour as $x \to \infty$, has significant application and connection to Limits in Calculus.
- Also, we mentioned that Horizontal Asymptotes can be crossed. This is because we are only concerned with the restriction of a Horizontal Asymptote as $x \to \pm \infty$.

We will see how graphs reflect these scenarios in Section 4.4

Finding the x - intercept(s) and y - intercept

- We have been finding these intercepts since grade 9
- The y intercept is where the function crosses the y axis, this happens when x = 0
- The x intercept(s) is where the function crosses the x axis, this happens when y = 0
- Set the appropriate variable to 0 and solve for the desired information

Example 7: Find the
$$x - intercept(s)$$
 and the $y - intercept$ of: $f(x) = \frac{x^2 + 2x - 3}{x^2 - 9}$

Solution 7: For the x - intercept set y = 0, for the y - intercept set x = 0

y – intercept	x – intercept	
Let $x = 0$,	Let $f(x) = y = 0$,	
$f(0) = \frac{(0)^2 + 2(0) - 3}{(0)^2 - 9}$	$y = \frac{x^2 + 2x - 3}{x^2 - 9}$	
	Only interested in when the Numerator is 0	
$f(0) = \frac{-3}{-9} = \frac{1}{3}$	$0 = x^2 + 2x - 3$	
	$0 = (x + 3)(x - 1) \rightarrow x = -3, 1$	
$y - intercept is: \left(0, \frac{1}{3}\right)$	x - intercept is: (-3, 0) and (1, 0)	

Example 8: Find the x - intercept(s) and the y - intercept of: $f(x) = \frac{x^4 - 16}{x^3 + x}$

Solution 8: For the x - intercept set y = 0, for the y - intercept set x = 0

y – intercept	x – intercept	
Let $x = 0$, $f(0) = \frac{x^4 - 16}{x^3 + x}$	Let $f(x) = y = 0, 0 = \frac{x^4 - 9}{x^3 + x}$	
$f(0) = \frac{1}{x^3 + x}$	Only interested in when the Numerator is 0	
	$0 = x^4 - 9$	
$f(0) = \frac{0^4 - 16}{0^3 - 0} = \frac{-16}{0} = Undefined$	$0 = (x^2 - 3)(x^2 + 3)$	
$\int (0)^{2} = 0^{3} - 0^{2} = 0^{3} - 0^{3} - 0^{3} = 0^{3} - 0^{3} - 0^{3} = 0^{3} - 0^{3} - 0^{3} = 0^{3} - 0^{3} - 0^{3} - 0^{3} = 0^{3} - 0^{3} - 0^{3} - 0^{3} - 0^{3} = 0^{3} - $	$0 = (x + \sqrt{3})(x - \sqrt{3})(x^2 + 3) \to x = \pm\sqrt{3}$	
y – intercept is: None	x – intercept is: $(-\sqrt{3}, 0)$ and $(\sqrt{3}, 0)$	

Adrian Herlaar, School District 61

www.mrherlaar.weebly.com

Example 9: Find the
$$x - intercept(s)$$
 and the $y - intercept$ of: $f(x) = \frac{x^2 - 4}{x^2 - x - 2}$

Solution 9.	For the x – <i>intercept</i> set $y = 0$, for the y – <i>intercept</i> set $x = 0$
<u>301011011 9.</u>	To the $x - intercept set y - 0, for the y - intercept set x - 0$

y – intercept	x – intercept	
Let $x = 0$,	Let $f(x) = y = 0$,	
$f(0) = \frac{(0)^2 - 4}{(0)^2 - (0) - 2}$	$y = \frac{x^2 - 4}{x^2 - x - 2}$	
	Only interested in when the Numerator is 0	
$f(0) = \frac{-4}{-2} = 2$	$0 = x^2 - 4$	
	$0 = (x - 2)(x + 2) \rightarrow x = -2, 2$	
y – intercept is: (0,2)	x - intercept is: (-2, 0) and (2, 0)	

Example 10: Find the
$$x - intercept(s)$$
 and the $y - intercept$ of: $f(x) = \frac{1}{x+1} - \frac{1}{x-1} + 2$

Solution 10: For the x – *intercept* set y = 0, for the y – *intercept* set x = 0, some algebra is required to get into a form that we can use efficiently; LCM in this case is (x + 1)(x - 1)

$$\frac{1}{x+1} - \frac{1}{x-1} + 2 \rightarrow \frac{(x-1) - (x+1) + 2(x-1)(x+1)}{(x+1)(x-1)} \rightarrow \frac{-2 + 2x^2 - 2}{(x+1)(x-1)} = \frac{2x^2 - 4}{(x+1)(x-1)}$$

y - interceptLet x = 0, $f(0) = \frac{2(0)^2 - 4}{(0+1)(0-1)}$ $f(0) = \frac{-4}{-1} = 4$ y - intercept is: (0,4) x - interceptLet f(x) = y = 0, $y = \frac{2x^2 - 4}{(x+1)(x-1)}$ Only interested in when the Numerator is 0 $0 = 2x^2 - 4$ $2x^2 = 4 \rightarrow x^2 = 2 \quad x = -\sqrt{2}, \sqrt{2}$ $x - intercept is: (-\sqrt{2}, 0) and (\sqrt{2}, 0)$ Pre-Calculus 12

Holes in Rational Functions

- As mentioned earlier, we can have holes in our graph
- This occurs when we have restrictions in our denominator, thus creating a vertical asymptote, but then this asymptote values factors and cancels out
- The cancelled-out factor creates a hole instead of an asymptote

Example 11: Graph the function $f(x) = \frac{x+2}{x^2 - x - 6}$

Solution 11: Consider the denominator: $x^2 - x - 6$, it factors to (x - 3)(x + 2), this would give us two vertical asymptotes at x = 3 and x = -2

Look what happens when we see the entire function, with a factored denominator.

$$f(x) = \frac{x+2}{x^2 - x - 6} = \frac{x+2}{(x-3)(x+2)} \to \frac{(x+2)}{(x-3)(x+2)}$$

This reduces to:

$$f(x) = \frac{1}{(x-3)}$$

- One of our denominator restrictions has cancelled out. This leaves us with only one asymptote at x = 3.
- x = -2 is still a Domain Restriction so it is still not allowed to exist on our graph, we still need to find the corresponding y - value of the coordinate.

$$f(-2) = \frac{1}{(-2-3)} = -\frac{1}{5}$$

So, what this means is that we will have **a Hole at the coordinate**:

$$\left(-2,-\frac{1}{5}\right)$$

Example 12: Determine the vertical asymptotes and the holes of: $f(x) = \frac{x-3}{x^2-9}$

Solution 12: Factor the denominator to see if anything cancels

$$f(x) = \frac{x-3}{x^2-9}$$
Vertical Asymptote at the remaining factor: $(x + 3)$
Vertical Asymptote at: $x = -3$
Hole at $x - coordinate$ of 3
Find the $y - coordinate$

$$f(x) = \frac{-(x-3)}{(x-3)(x+3)}$$

$$f(x) = \frac{1}{(x+3)}$$
Hole at: $(3, \frac{1}{6})$

Example 13: Determine the vertical asymptotes and the holes of: $f(x) = \frac{x^2 + 8x + 12}{x + 6}$

Solution 13: Factor the denominator to see if anything cancels

 $f(x) = \frac{x^2 + 8x + 12}{x + 6}$ The denominator cancelled out we have no Vertical Asymptote $f(x) = \frac{(x + 2)(x + 6)}{(x + 6)}$ Hole at x - coordinate of -6Find the y - coordinate $f(x) = \frac{(x + 2)(x + 6)}{(x + 6)}$ Find the y - coordinatef(-6) = (-6 + 2) = -4Hole at: (-6, -4)

In the next Section we put all of this together and look at graphing these Rational Functions

Section 4.3– Practice Problems

1. Answer the following questions to lockdown your vocabulary.

a)	A rational expression is defined as the of two polynomials with the not equal to zero.	b)	A function defined by $f(x) = \frac{g(x)}{h(x)}$ with g(x) and $h(x)$ functions and $h(x) \neq 0$, is called a function
c)	To determine the excluded values of the domain of a rational function, we find the values for where the is equal to	d)	A vertical line that a graph approaches but never touches is called a
e)	A horizontal line that a graph approached as $x \to \pm \infty$ is called a	f)	The graph of a Rational Function $f(x) = \frac{3}{x-2}$ will have a vertical asymptote of and a horizontal asymptote of

2. Find the Domain, the x - intercept(s), y - intercepts, and any *holes* for the following

a) $y = \frac{3x - 9}{4x + 12}$	b) $y = \frac{(x+6)(x+3)}{(x-2)^2}$

c)
$$y = \frac{x^2 - 8x - 9}{x^2 - x - 6}$$

d) $y = \frac{(x^2 - 1)(x + 1)}{x^3}$
e) $y = \frac{x + 2}{x^2 + 4}$
f) $y = \frac{-3x^2 + 12}{x^2 - 9}$

B)
$$y = \frac{4}{(x+4)^2}$$

h) $y = \frac{-x^2 + 9}{-2x^2 + 8}$
i) $y = \frac{2+x}{x^2+4}$
j) $y = \frac{x^2 - 3x - 4}{4 + 3x - x^2}$

3. Find the y - intercept and x - intercept(s) vertical and horizontal asymptotes of the following

a)
$$y = -\frac{4}{x}$$

b) $y = -\frac{3}{x^2}$
c) $y = 1 + \frac{1}{x}$
d) $y = 2 - \frac{1}{x}$

e)
$$y = -4 + \frac{1}{x^2}$$

f) $y = -1 - \frac{1}{x^2}$
g) $y = -\frac{1}{x+1}$
h) $y = -\frac{2}{(x+1)^2}$

i)
$$y = 3 + \frac{2}{x - 1}$$

 j) $y = 1 - \frac{2}{(x + 1)^2}$

4. What are the Vertical Asymptote, Horizontal Asymptote, and any holes of the following.

a)
$$y = \frac{1}{x}$$
 b) $y = \frac{2}{x+3}$

c)
$$y = \frac{1}{x^2 - 7x + 12}$$

d) $y = \frac{x^2}{x^2 - 9}$
e) $y = \frac{x}{x^2 + 1}$
f) $y = \frac{x^3}{x^2 - x - 20}$

g)
$$y = \frac{x^2 + 3x - 1}{4 - x^2}$$

h) $y = \frac{2x^3 - 18x}{x^3 - 3x^2 - 4x}$
j) $y = \frac{x^2 - 4}{2x^3 + 7x^2 - 4x}$
j) $y = \frac{9 - 6x}{4x^2 - 9}$

k)
$$y = \frac{16x - x^3}{2x^3 + 7x^2 - 4x}$$
 |) $y = 1 - \frac{3}{x^2 - 1}$

See Website for Detailed Answer Key of the Remainder of the Questions

Extra Work Space