Section 4.1b – Probability

Theoretical and Experimental Probability

• Both Theoretical and Experimental Probability are calculated the same way

 $P = \frac{\text{the number of times something happened}}{\text{the number of times we tried}}$

So, to understand the difference between the two, let's look at the tossing of a coin.

Theoretical Probability:	What we expect to happen (We can get heads or tails)
Experimental Probability:	What actually happened (What happened over the course of flips)

Example 1: What are the odds of flipping heads theoretically and within the experiment?

Solution 1:

Theoretical Probability: tells us that it is: 50% (one or the other, over an infinite number of flips)

Experimental Probability:

Requires some trials:

Heads	13
Tails	7
Total	20

Heads: $\frac{13}{20} = \frac{65}{100} = 65\%$
Tails: $\frac{7}{20} = \frac{35}{100} = 35\%$

The more we flip we will see that
the outcomes will eventually even
out, it may take an extremely large
number of attempts!

For another example of **Experimental Probability**, let's look at dice.

Example 2:	Use the data below to calculate the experimental probability of: rolling a five, an even	
	number. a three or a 1	

		number, a th			3 12
Solution 2: We need		We need son	ne trials:	Odds of rolling a 5:	$\frac{3}{25} = \frac{12}{100} = 12\%$
	Number	Outcome			10 40
	1	4		Odds of rolling an even number:	$\frac{10}{25} = \frac{10}{100} = 40\%$
	2	5			12 48
	3	8		Odds of rolling a 3 or 1:	$\frac{12}{25} = \frac{48}{100} = 48\%$
	4	1			
	5	3		Experimental Probability differs from	
	6	4		have more interesting predictive ca	-
•				sequences of atten	npts.

Theoretical Probability

- The theoretical probability is the mathematical model considering all possible outcomes
- We use the equation:

We use the equation:	$0 \le P \le 1$
$P(E) = \frac{number \ of \ successes}{total \ number \ of \ outcomes}$	Which is why we get percentages.
Known as the Sample Space	get percentages.

What is the probability of getting a 5 or 6 when rolling a 6-sided die? Example 3:

A die has six faces {1, 2, 3, 4, 5, 6} so the successful outcomes are {5, 6}. Solution 3:

$$P(E) = \frac{number \ of \ successes}{total \ number \ of \ outcomes} = \frac{2}{6} = \frac{1}{3} = 33.3\%$$

What is the probability if a of a couple having three children, where one is a girl and two Example 4: are boys? (Not including twins, considering sex at birth)

Solution 4: First consider the Sample Space Let B = Boy G = Girl

1 st Born	В	В	В	G	G	G	В	G
2 nd Born	В	В	G	В	G	В	G	G
3 rd Born	В	G	В	В	В	G	G	G

So, we have 8 possible outcomes. A Sample Space of 8.

 $P(E) = \frac{number \ of \ successes}{total \ number \ of \ outcomes} = \frac{3}{8} = 37.5\%$ One girl and two boys occur 3 times.

Example 5: What is the probability of selecting a red Queen from a standard deck of cards?

A deck of cards has 52 cards. In those 52 cards, 4 are Queens, two of which are red. Solution 5:

$$P(E) = \frac{number \ of \ successes}{total \ number \ of \ outcomes} = \frac{2}{52} = \frac{1}{26} = 3.8\%$$

Using a Tree Diagram to Find the Sample Space

Example 6: Draw a Tree Diagram to visualize the potential outcomes of flipping a coin twice.

Solution 6:

Section 4. 1b – Practice Problems

	1	2	3	4	5	6
1	(1, 1)	(1, 2)	(1, 3)	(1, 4)	(1, 5)	(1, 6)
2	(2, 1)	(2, 2)	(2, 3)	(2, 4)	(2, 5)	(2, 6)
3	(3, 1)	(3, 2)	(3, 3)	(3, 4)	(3, 5)	(3, 6)
4	(4, 1)	(4, 2)	(4, 3)	(4, 4)	(4, 5)	(4, 6)
5	(5, 1)	(5, 2)	(5, 3)	(5, 4)	(5, 5)	(5, 6)
6	(6, 1)	(6, 2)	(6, 3)	(6, 4)	(6, 5)	(6, 6)

1. Using the table provided below, what is the probability of:

- a) Rolling two dice with a sum of 8
- b) Rolling doubles
- c) Rolling two dice with a sum of 7 or 11
- d) A sum less than 5
- e) As sum that is odd
- f) A sum that is even

2. The following table demonstrated experimental results, what is the experimental probability that:

Owner	Appearance	Performance	Total
Older Adult (Over 30)	110	120	230
Younger Adult (<30)	90	180	270
Both	200	300	500

- a) A car owner selects their purchase based on appearance
- b) An older adult car owner selects their vehicle based on appearance
- c) A younger adult car owner selects their vehicle based on appearance
- 3. Given the data collected in the table below, what is the experimental probability that:

Athlete	Hockey	Running	Basketball	Soccer	Swimming	Total
Serious	102	58	32	63	25	280
Casual	96	47	41	24	12	220

- a) The customer's favorite sport is soccer?
- b) The customer is a serious athlete?
- c) The customer is a casual athlete whose favorite sport is swimming?
- d) Customer is a serious athlete whose favorite sport is basketball?

Foundations of Math 9

The following questions concern Theoretical Probability

- 4. A card is drawn from a standard deck of 52 cards. What is the probability that:
- a) The card is a face card (Jack, Queen, King)

- b) The card is a Spade
- 5. Two dice are thrown. What is the probability that you roll doubles?

6. If I placed three books on a shelf, what is the probability that I placed them in alphabetical order?

7. A card is drawn from a standard deck of 52 cards. What is the probability that it is a face card or a diamond?