Section 4.1 - Radicals

- We have seen Radicals in PC 11, and we looked at basic transformation in Section 2 of this course.
- This section will explore them at a deeper level.

Definition of a Radical $\sqrt[n]{a}$

Let \boldsymbol{n} be a positive real number greater than 1, and let \boldsymbol{a} be any real number.

Then:

1. If $\boldsymbol{a}>\boldsymbol{0}$ and \boldsymbol{n} is even, we have two real number solutions, a positive and negative solution
2. If $\boldsymbol{a}<\mathbf{0}$ and \boldsymbol{n} is even, we have no real number solution (Even root of a negative Does Not Exist)
3. If $\boldsymbol{a}>\boldsymbol{0}$ and \boldsymbol{n} is odd, we have one real number solution, only a positive one
4. If $\boldsymbol{a}<\mathbf{0}$ and \boldsymbol{n} is odd, we have one real number solution, only a negative one
5. If $a=0, \sqrt[n]{0}=0$, regardless of n begin odd or even

- A bit of Formal Vocabulary:

Radical Notation

The solution x, is the $n^{\text {th }}$ root of a if $x^{n}=a$ and $\sqrt[n]{a}=x$

a is called the radicand

Example 1: \quad Solve the following for x, a real number:
a) $x^{2}=1$
b) $x^{3}=-27$
c) $x^{4}=5$
|d) $x^{4}=-5$
|e) $x^{5}=5$
f) $x^{5}=-5$

Solution 1:

$x^{2}=1$	b)	$x^{3}=-27$
$x= \pm \sqrt{1}$	$x=\sqrt[3]{-27}$	$x^{4}=5$
$x= \pm 1$	$x=-3$	$x= \pm \sqrt[4]{5}$
d)	$x^{5}=5$	$x \approx \pm 1.5$
	$x= \pm \sqrt[4]{-5}$	$x=\sqrt[5]{5}$
$x=$ Does Not Exist	$x \approx 1.38$	$x=\sqrt[5]{-5}$
		$x \approx-1.38$

Graphing Radicals in the Form $y=a \sqrt{b(x-h)}+k$

The connection between Transformations stays the same here

- The a-value is a vertical stretch/compression (when $a<0$, it is a reflection in the x-axis)
- The b-value is a horizontal stretch/compression (when $b<0$, it is a reflection in the y-axis)
- The h-value is a horizontal shift left/right
- The k - valuw is a vertical shift up/down
Example 2: Graph
a) $y=\sqrt{x}$
b) $y=\sqrt{-x}$
c) $y=-\sqrt{x}$
d) $y=-\sqrt{-x}$

Solution 2:

a)

Range: $y \geq 0$
b)

Domain: $x \leq 0$
Range: $y \geq 0$
c)

Domain: $x \geq 0$
Range: $y \leq 0$
d)

Domain: $x \leq 0$
Range: $y \leq 0$
Example 3: Graph
a) $y=\sqrt{x-1}$
b) $y=\sqrt{x+1}$
c) $y=\sqrt{x}+1$
d) $y=\sqrt{x}-1$

Solution 3:

Domain: $x \geq 1$
Range: $y \geq 0$
b)

Domain: $x \geq-1$
Range: $y \geq 0$
c)

Domain: $x \geq 0$
Range: $y \geq 1$
d)

Domain: $x \geq 0$
Range: $y \geq-1$

Example 4: \quad Graph $\quad y=\sqrt{x} \quad y=\sqrt{2 x} \quad y=\sqrt{\frac{1}{2} x}$
Solution 4:

- When we consider Radicals, we have to consider the Domain and the Range
- There are values of x that are not allowed. There are vertical asymptotes and horizontal asymptotes that terminates the radical, consider this when we have Horizontal and Vertical Translations
Example 5:
Graph \quad a) $y=2 \sqrt{4-x}+1$
b) $y=-\sqrt{2 x-4}-1$

Solution 5:

a) Domain: $4-x \geq 0 \quad \rightarrow \quad \boldsymbol{x} \geq \mathbf{4}$

Range: Since $2 \sqrt{4-x} \geq 0$ then $2 \sqrt{4-x}+1$ is a Vertical Translation of +1 so:

$$
y \geq 1
$$

By Transformation:
$y=\sqrt{x} \rightarrow y=2 \sqrt{4-x}+1 \rightarrow y=2 \sqrt{-(x-4)}+1$

$$
(a, b) \rightarrow(-a+4,2 b+1)
$$

$(0,0) \rightarrow(4,1) ;(1,1) \rightarrow(3,3)$
$(4,2) \rightarrow(0,5) ;(9,3) \quad \rightarrow \quad(-5,7)$

b) Domain: $2 x-4 \geq 0 \rightarrow 2 x \geq 4 \rightarrow \boldsymbol{x} \geq \mathbf{2}$

Range: \quad Since $-\sqrt{2 x-4} \leq 0$ then $-\sqrt{2 x-4}-1$ is a Vertical Translation of -1 so:

$$
y \leq-1
$$

By Transformation:
$y=\sqrt{x} \rightarrow y=-\sqrt{2 x-4}-1 \rightarrow y=-\sqrt{2(x-2)}-1$
$(a, b) \rightarrow\left(\frac{1}{2} a+2,-b-1\right)$
$(0,0) \rightarrow(2,-1) ;(1,1) \rightarrow(2.5,-2)$
$(4,2) \rightarrow(4,-3) ;(9,3) \rightarrow(6.5,-4)$

Graphing Radical Functions with Even and Odd Root Indexes

- As we saw with even root indexes, we have domain restrictions when the radicand is negative
- If the root index if odd, there are no domain restrictions, negative radicands work too
- Let's see the difference graphically.

Example 6: How do the graphs of: a) $y=\sqrt{x}$ b) $y=\sqrt[3]{x}$ c) $y=\sqrt[4]{\sqrt{x}}$ d) $y=\sqrt[5]{x}$, differ?
Solution 6:
a) $y=\sqrt{x}$ Domain: $x \geq 0$, Range: $y \geq 0$

c) $y=\sqrt[4]{x}$ Domain: $x \geq 0$, Range: $y \geq 0$

b) $y=\sqrt[3]{x}$ Domain and Range: All Real Numbers

d) $y=\sqrt[5]{x}$ Domain and Range: All Real Numbers

Example 7: $\quad G r a p h \quad$ a) $y=-\sqrt[4]{x-1}-2 \quad$ and \quad b) $y=-\sqrt[3]{x-1}-2$

Solution 7:

a) $y=-\sqrt[4]{x-1}-2$

Domain: $x \geq 1$, Range: $y \leq-2$

b) $y=-\sqrt[3]{x-1}-2$

Domain and Range: All Real Numbers

Graphing $y=f(x)$ and $y=\sqrt{f(x)}$

- Due to Domain Restrictions on $y=\sqrt{f(x)}$ and all other even root functions, graphs look different

Example 8: \quad Graph $y=x^{2}$ and $y=\sqrt{x^{2}}$

Solution 8:

```
For }y=\mp@subsup{x}{}{2
Domain: All Real Numbers
Range: \(y \geq 0\)
For \(y=\sqrt{x^{2}}\)
Domain: All Real Numbers
Range: \(y \geq 0\)
```


Example 9: \quad Graph $y=x^{3}$ and $y=\sqrt{x^{3}}$

Solution 9:

Example 10: \quad Graph $f(x)=\frac{1}{2} x^{2}-2$ and $y=\sqrt{f(x)}$
Solution 10: Radicals have Domain Restrictions, which is why the graphs vary so much

For $y=\frac{1}{2} x^{2}-2$

Domain: All Real Numbers

Range: $\quad y \geq 2$

For $y=\sqrt{\frac{1}{2} x^{2}-2}$
Range: $\quad y \geq 0$ ------------------------------

Section 4.1 - Practice Problems

1. Answer the following questions to lockdown your vocabulary.

a) In radical notation, $\sqrt[n]{x}, x$ is called what?	b) In radical notation, what do we call the root symbol?
c) In radical notation, $\sqrt[n]{x}, n$ is called what?	d) The $n^{\text {th }}$ root of x is written?
e) $\sqrt{25}=5$ is read the \qquad root of 25 equals 5 .	f) $\sqrt[3]{-27}=-3$ is read the \qquad root of -27 equals -3 .
g) The $n^{\text {th }}$ root of x is not a real number if n is \qquad and x is \qquad	h) The Domain of a radical with even index excludes all values that make the radicand \qquad

2. Solve for x.

a) $x^{2}=9$	b) $x^{2}=-9$	c) $x^{3}=8$	d) $x^{3}=-8$
e) $x^{4}=1$	f) $x^{4}=-1$	g) $x^{5}=32$	h) $x^{5}=-32$

3. Simplify each radical
a) $\sqrt{4 x^{2}}, x \geq 0$
b) $\sqrt{4 x^{2}}, x<0$
c) $\sqrt[3]{27 x^{3}}, x<0$
d) $\sqrt[3]{-27 x^{3}}, x \geq 0$
4. What is the Domain and Range of the following functions?
a) $y=x$
b) $y=\sqrt{x}$
c) $y=\sqrt{1-x}$
d) $y=-\sqrt{x-1}$
e) $y+2=\sqrt{1-x}$
f) $y-2=\sqrt{x-1}$
g) $y+3=\sqrt{2 x-4}$
i) $y=-\sqrt{-2 x-4}+3$
j) $y=\sqrt{x^{2}-4}$
k) $y=-\sqrt{4-x^{2}}$
I) $y=-\sqrt{x^{3}-8}$
5. Match the equation with the graph.

a) $f(x)=\sqrt{-x}$	
b) $f(x)=-\sqrt{x}$	
c) $f(x)=\sqrt[3]{x}$	
d) $f(x)=\sqrt{1-x}$	
e) $f(x)=\sqrt{x^{2}}$	
f) $f(x)=-\sqrt{x-1}$	
g) $f(x)=-\sqrt{x}-1$	
h) $f(x)=1-\sqrt[3]{-x}$	
i) $f(x)=1-\sqrt{x-1}$	
j) $f(x)=1-\sqrt{1-x}$	
k) $f(x)=\sqrt{x^{2}-1}$	
l) $f(x)=1+\sqrt[3]{-x}$	
m) $f(x)=-1-\sqrt{1-x}$	
n) $f(x)=-1+\sqrt{x+1}$	

F

J

M

A

C

G

K

N

,

B

D

H

L

6. Graph the following functions. State the Domain and the Range

a) $f(x)=2 x$
Domain:
Range:

c) $f(x)=4-x^{2}$

Domain:
Range:

b) $f(x)=\sqrt{2 x}$

Domain:
Range:

d) $f(x)=\sqrt{4-x^{2}}$

Domain:
Range:

e) $f(x)=\frac{1}{3} x^{2}-3$

Domain:

Range:

g) $f(x)=-\frac{1}{8} x^{3}+1$

Domain:

Range:

f) $f(x)=\sqrt{\frac{1}{3} x^{2}-3}$

Domain:

Range:

h) $f(x)=\sqrt{-\frac{1}{8} x^{3}+1}$

Domain:
Range:

See Website for Detailed Answer Key of the Remainder of the Questions

Extra Work Space

