Section 4.1 – Radicals

- We have seen Radicals in PC 11, and we looked at basic transformation in Section 2 of this course.
- This section will explore them at a deeper level.

Definition of a Radical $\sqrt[n]{a}$

Let *n* be a positive real number greater than 1, and let *a* be any real number.

Then:

- 1. If a > 0 and n is even, we have two real number solutions, a positive and negative solution
- 2. If *a* < 0 and *n* is even, we have no real number solution (Even root of a negative Does Not Exist)
- 3. If a > 0 and n is odd, we have one real number solution, only a positive one
- 4. If a < 0 and n is odd, we have one real number solution, only a negative one
- 5. If a = 0, $\sqrt[n]{0} = 0$, regardless of *n* begin odd or even
- A bit of Formal Vocabulary:

Example 1: Solve the following for *x*, a real number:

a) $x^2 = 1$ | b) $x^3 = -27$ | c) $x^4 = 5$ | d) $x^4 = -5$ | e) $x^5 = 5$ | f) $x^5 = -5$

Solution 1:

a)	$x^2 = 1$	b)	$x^3 = -27$	c)	$x^4 = 5$
	$x = \pm \sqrt{1}$		$x = \sqrt[3]{-27}$		$x = \pm \sqrt[4]{5}$
	$x = \pm 1$		x = -3		$x \approx \pm 1.5$
d)	$x^4 = -5$	e)	$x^5 = 5$	f)	$x^5 = -5$
	$x = \pm \sqrt[4]{-5}$		$x = \sqrt[5]{5}$		$x = \sqrt[5]{-5}$
	x = Does Not Exist		$x \approx 1.38$		$x \approx -1.38$

www.mrherlaar.weebly.com

Pre-Calculus 12

Graphing Radicals in the Form $y = a\sqrt{b(x-h)} + k$

The connection between Transformations stays the same here

- The a value is a vertical stretch/compression (when a < 0, it is a reflection in the x axis) •
- The b value is a horizontal stretch/compression (when b < 0, it is a reflection in the y axis) •
- The h value is a horizontal shift left/right •
- The k valuw is a vertical shift up/down •

Graph a) $y = \sqrt{x}$ b) $y = \sqrt{-x}$ c) $y = -\sqrt{x}$ d) $y = -\sqrt{-x}$ Example 2:

a) $y = \sqrt{x-1}$ b) $y = \sqrt{x+1}$ c) $y = \sqrt{x}+1$ d) $y = \sqrt{x}-1$ Example 3: Graph

Solution 3:

- When we consider Radicals, we have to consider the Domain and the Range
- There are values of x that are not allowed. There are vertical asymptotes and horizontal asymptotes that terminates the radical, consider this when we have Horizontal and Vertical Translations

Example 5: Graph a) $y = 2\sqrt{4-x} + 1$ b) $y = -\sqrt{2x-4} - 1$

Solution 5:

a) Domain:
$$4 - x \ge 0 \rightarrow x \ge 4$$

Range: Since $2\sqrt{4 - x} \ge 0$ then $2\sqrt{4 - x} + 1$
is a Vertical Translation of $+1$ so:
 $y \ge 1$
By Transformation:
 $y = \sqrt{x} \rightarrow y = 2\sqrt{4 - x} + 1 \rightarrow y = 2\sqrt{-(x - 4)} + 1$
 $(a, b) \rightarrow (-a + 4, 2b + 1)$
 $(0, 0) \rightarrow (4, 1); (1, 1) \rightarrow (3, 3)$
 $(4, 2) \rightarrow (0, 5); (9, 3) \rightarrow (-5, 7)$
 $(4, 2) \rightarrow (0, 5); (9, 3) \rightarrow (-5, 7)$
 $(4, 2) \rightarrow (4, -3); (9, 3) \rightarrow (6, 5, -4)$
 $(4, 2) \rightarrow (4, -3); (9, 3) \rightarrow (6, 5, -4)$

Pre-Calculus 12

Graphing Radical Functions with Even and Odd Root Indexes

- As we saw with even root indexes, we have domain restrictions when the radicand is negative
- If the root index if odd, there are no domain restrictions, negative radicands work too
- Let's see the difference graphically.

Example 6: How do the graphs of: a) $y = \sqrt{x}$ b) $y = \sqrt[3]{x}$ c) $y = \sqrt[4]{\sqrt{x}}$ d) $y = \sqrt[5]{x}$, differ?

Solution 6:

Example 7: Graph a) $y = -\sqrt[4]{x-1} - 2$ and b) $y = -\sqrt[3]{x-1} - 2$

Solution 7:

Graphing y = f(x) and $y = \sqrt{f(x)}$

• Due to Domain Restrictions on $y = \sqrt{f(x)}$ and all other even root functions, graphs look different

Example 8: Graph $y = x^2$ and $y = \sqrt{x^2}$

Solution 8:

Graph $y = x^3$ and $y = \sqrt{x^3}$ Example 9:

Solution 9:

Graph $f(x) = \frac{1}{2}x^2 - 2$ and $y = \sqrt{f(x)}$ Example 10:

Adrian Herlaar, School District 61

Section 4.1 – Practice Problems

1. Answer the following questions to lockdown your vocabulary.

a) In radical notation, $\sqrt[n]{x}$, x is called what?	b) In radical notation, what do we call the root symbol?
c) In radical notation, $\sqrt[n]{x}$, <i>n</i> is called what?	d) The <i>n</i> th root of <i>x</i> is written?
e) $\sqrt{25} = 5$ is read the root of 25 equals 5.	f) $\sqrt[3]{-27} = -3$ is read the root of -27 equals -3.
g) The n th root of x is not a real number if n is and x is	 h) The Domain of a radical with even index excludes all values that make the radicand

2. Solve for *x*.

a)
$$x^{2} = 9$$

b) $x^{2} = -9$
c) $x^{3} = 8$
d) $x^{3} = -8$
e) $x^{4} = 1$
f) $x^{4} = -1$
g) $x^{5} = 32$
h) $x^{5} = -32$

3. Simplify each radical

b) $\sqrt{4x^2}, \ x < 0$ a) $\sqrt{4x^2}$, $x \ge 0$ c) $\sqrt[3]{27x^3}, x < 0$ d) $\sqrt[3]{-27x^3}, x \ge 0$ 7

4. What is the Domain and Range of the following functions?

a) $y = x$	b) $y = \sqrt{x}$
c) $y = \sqrt{1 - x}$	d) $y = -\sqrt{x-1}$
e) $y + 2 = \sqrt{1 - x}$	f) $y - 2 = \sqrt{x - 1}$

g)
$$y + 3 = \sqrt{2x - 4}$$

h) $y - 3 = -\sqrt{2x + 4}$
i) $y = -\sqrt{-2x - 4} + 3$
j) $y = \sqrt{x^2 - 4}$
k) $y = -\sqrt{4 - x^2}$
l) $y = -\sqrt{x^3 - 8}$

5. Match the equation with the graph.

Κ

-5

www.mrherlaar.weebly.com

6. Graph the following functions. State the Domain and the Range

See Website for Detailed Answer Key of the Remainder of the Questions

Adrian Herlaar, School District 61

Extra Work Space