4.1 Increasing and Decreasing Functions

It is very helpful, when considering the behaviour of a function, to know when it rises and when it falls. The graph below of the function f, falls from A to B, rises from B to C, and then falls again from C to D.

We say that f is **decreasing** on the interval (1,3), **increasing** on the interval (3,6) and **decreasing** on the interval (6,8).

Notice that for any two numbers x_1 and x_2 , between 3 and 6 with $x_1 < x_2$, we have $f(x_1) < f(x_2)$

In general, a function f is called increasing on an interval if:

$$f(x_1) < f(x_2)$$
 whenever $x_1 < x_2$

And a function f is called decreasing on an interval if:

$$f(x_1) > f(x_2)$$
 whenever $x_1 < x_2$

Connection to the Derivative

The graph below shows how the **derivative of a function** can tell us where the function is increasing or decreasing.

When f'(x) > 0, the tangents have a positive slope; thus, they are increasing from left to right, for this course we can infer that a positive derivative indicates an increasing function.

When f'(x) < 0, the tangents have a negative slope; thus, they are decreasing from left to right, for this course we can infer that a negative derivative indicates a decreasing function.

These two inferences are proved in more advanced course.

Test for Increasing or Decreasing Functions

- 1. If f'(x) > 0 for all x in an interval I, the f is increasing on I
- 2. If f'(x) < 0 for all x in an interval I, the f is decreasing on I

Ex 1: Find the interval on which the function $f(x) = 1 - 5x + 4x^2$ is increasing and decreasing. Draw a rough sketch of the graph

First find the derivative f'(x) = -5 + 8xIncreasing when f'(x) > 0 $-5 + 8x > 0 \implies 8x > 5$ x > 5/8

decreasing when fixixo

Ex 2: Where is the function $y = x^3 + 6x^2 + 9x + 2$ increasing?

Derivative 1^{st} $y' = 3x^{2} + 12x + 9 \longrightarrow 3(x^{2} + 4x + 3)$ 3(x+3)(x+1)

$$3(x+3)(x+1)>0$$
 \rightarrow $(x+3)(x+1)>0$

Interval	(x+1)	(x+3)	fixi	
×<-3	-	_	+	increasing
-36x4-1	-	+	, -	decreasing
×7-1	4 8	*	+	increasing

Ex 3: Find the intervals of increase and decrease for the function:

$$g(x) = x^{4} - 4x^{3} - 8x^{2} - 1$$

$$g'(x) = 4x^{3} - 12x^{2} - 16x$$

$$= 4x(x^{2} - 3x - 4)$$

$$= 4x(x - 4)(x + 1)$$

Interval	4×	(x-4)	(x+1)	fix	f
(-\omega, -1)	-		_	- "	decreasing
(-1,0)	-	_	+	+	increasing
(0,4)	+	-	4		decreasing
(4,00)	+	+	+	+	Increasing

Increasing:
$$(-1,0)U(4,\infty)$$

Homework Problems

• Section 4.1: #1 - 5