Section 3.7 – Rational Functions

This booklet belongs to:	Block:
--------------------------	--------

• A function *f* is a Rational Function if:

$$f(x) = \frac{g(x)}{h(x)}$$

Where h(x) and g(x) are polynomials and h(x) does not equal 0.

- In this section we will look at the properties of Rational Functions and how they are graphed
- In the section that follows we will explore the mathematical operations involving Rational Functions
- The DOMAIN of a Rational function consists of all Real Numbers, except when it results in a zero denominator

For example:

$$g(x) = \frac{1}{x+2}$$
 has a Domain of all Real Numbers except when $x = -2$; this is denoted $x \neq -2$

$$h(x) = \frac{x}{x^2 - 9}$$
 has a Domain of all Real Numbers except when $x = -3, 3$; this is denoted $x \neq \pm 3$

$$j(x) = \frac{x-1}{x^2+1}$$
 has a Domain of all Real Numbers

Graphing a Rational Function

Consider the rational function $f(x) = \frac{1}{x}$ The Function is Not Defined when x = 0.

- It is important to consider the behaviour of the graph as it approaches this undefined point
- Some values for f(x) as x approaches 0 are:

This pattern is written:

As $x \to 0^+, f(x) \to +\infty$

(As x approaches 0 from the **right**, f(x) approaches an infinitely **large positive number**)

As $x \to 0^-$, $f(x) \to -\infty$

(As x approaches 0 from the **left**, f(x) approaches an infinitely **large negative number**)

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	x	f(x)	x	f(x)
0.01 100 -0.01 -100	1	1	-1	-1
	0.1	10	-0.1	-10
0.001 1000 -0.001 -1000	0.01	100	-0.01	-100
	0.001	1000	-0.001	-1000

This behaviour is defined by the vertical line x = 0 and is called a Vertical Asymptote of the function.

• It is also important to consider the behaviour of the graph as it moves away from this point

• Some values for f(x) as x approaches $\pm \infty$ are

This pattern is written:	

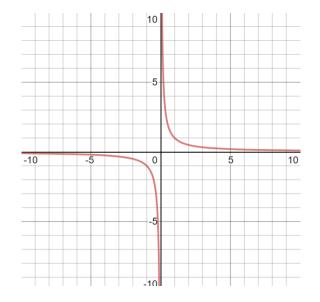
As $x \to +\infty$, $f(x) \to 0^+$

(As x approaches an infinitely **large positive number**, f(x) approaches a very small positive number)

x	f(x)	x	f(x)
10	1	-10	-1
100	10	-100	-10
1000	100	-1000	-100

As $x \to -\infty$, $f(x) \to 0^-$

(As x approaches an infinitely **large negative number**, f(x) approaches a very small negative number) This behaviour is defined by the horizontal line y = 0 and is called a Horizontal Asymptote of the function.



The graph of $f(x) = \frac{1}{x}$

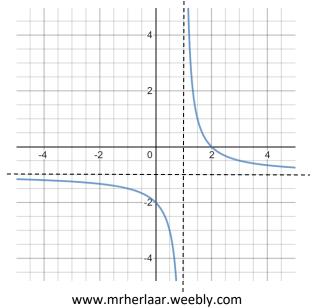
The lines approach y = 0 but never cross *Horizontal Asymptote* The lines approach x = 0 but never cross *Vertical Asymptote*

Example 1: Graph the Rational function $f(x) = \frac{1}{x-1} - 1$

Solution 1: The Domain is $x \neq 1$, so we have the vertical asymptote.

The graph is shifted down 1 unit, so the **horizontal asymptote** is y = -1

	x	2	0	1-	1+	-1000	1000				
	f(x)	0	-2	-∞	8	-1-	-1+				
	Note: 1 [–] means slightly less than 1										
	1 ⁺ mea	ans sligh	tly more		2						
Adri	Adrian Herlaar, School District 61										



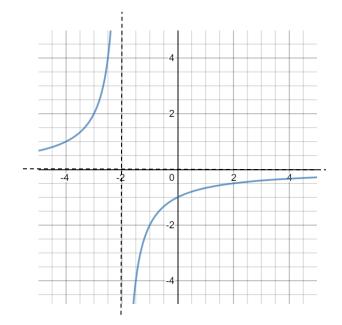
Pre-Calculus 11

Example 2: Graph the Rational function $g(x) = \frac{-2}{x+2}$

Solution 2: The Domain is $x \neq -2$, so we have the vertical asymptote.

The graph is not shifted up or down, so the **horizontal asymptote** is y = 0

x	0	-2-	-2+	-100	100
<i>g</i> (<i>x</i>)	-1	8	-∞	0+	0-



Asymptotes

- An asymptote is **not part of the graph**, they represent **points of approach**.
- Vertical Asymptotes can never be crossed, it is the vertical line representing the boundary the graph approaches as the denominator of the function approaches zero
- Horizontal Asymptotes represent the boundary the graph approaches as x approaches $\pm \infty$
- It is possible a graph crosses a horizontal asymptote, but not at the extremes of x

Vertical Asymptotes

- The vertical asymptote is found when the denominator is zero, you may need to factor the denominator to determine this (these) points.

Examples:

$$f(x) = \frac{1}{x+2}$$
 has a Vertical Asymptote $x = -2$, because $x + 2 = 0 \rightarrow x = -2$

$$h(x) = \frac{1}{x^2 - 4}$$
 has a Vertical Asymptotes $x = 2$ and $x = -2$, because $x^2 - 4 = 0 \rightarrow x = \pm 2$

$$j(x) = \frac{x-3}{x^2+1}$$
 has no Vertical Asymptote, since $x^2 + 1 = 0 \rightarrow x = \emptyset$

Horizontal Asymptotes

- The horizontal asymptote is the value y approaches as $x \to \pm \infty$
- Consider the function

$$f(x) = \frac{g(x)}{h(x)}$$

- 1. If h(x) is a higher degree than g(x), the Horizontal Asymptote is: y = 0
- 2. If g(x) and h(x) have the same degree, the Horizontal Asymptote is: $y = \frac{leading \ coefficient}{leading \ coefficient}$
- 3. If g(x) is a higher degree than h(x), there is no Horizontal Asymptote

Examples:

$$f(x) = \frac{3x+1}{x-2}$$
 has a Horizontal Asymptote $y = \frac{3}{1} = 3$, the numerator/denominator have the same degree

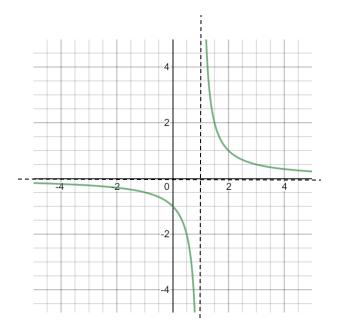
$$h(x) = \frac{2x}{x^2 - 4}$$
 has a Horizontal Asymptote $y = 0$

$$j(x) = \frac{x^2 - 3}{x + 1}$$
 has no Horizontal Asymptote, since numerator degree is larger than the denominator

- **Example 3:** Graph the Rational function $g(x) = \frac{1}{x-1}$
- Solution 3: Vertical asymptote is: *x* = 1

Horizonta	l asympto	te is: $v = 0$)
1101120110	asympto	c = 0.5	,

x	0	0.9	1.1	-10	10
<i>g</i> (<i>x</i>)	-1	-10	10	-0.1	0.1



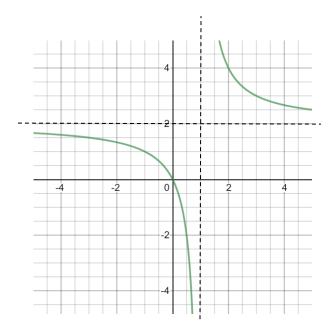
Pre-Calculus 11

Example 4: Graph the Rational function $g(x) = \frac{2x}{x-1}$

Solution 4: Vertical asymptote is: x = 1

Horizontal asymptote is: y = 2

x		0	0.9	1.1	-50	50
<i>g</i> (:	c)	0	-18	22	1.96	2.04

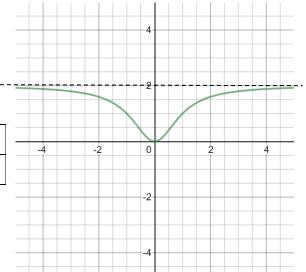


Example 5: Graph the Rational function
$$g(x) = \frac{2x^2}{x^2+1}$$

Solution 5: Vertical asymptote is: *None*

Horizontal asymptote is: y = 2

x	0	1	-1	-5	5	-100	100
<i>g</i> (<i>x</i>)	0	1	1	1.9	1.9	2-	2-



Example 6: Graph the Rational function $k(x) = \frac{2}{x^2 - x - 2}$

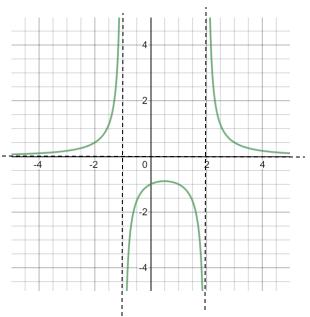
<u>Solution 6:</u> $k(x) = \frac{2}{(x-2)(x+1)}$

Vertical asymptote is: x = 2, -1

Horizontal asymptote is: y = 0

x	0	-0.9	-1.1	1.9	2.1	-10	10
<i>k</i> (<i>x</i>)	-1	-6.9	6.5	-6.9	6.5	0.02	0.02

• Remember the Horizontal Asymptote is only apparent at the extremes of positive and negative infinity on the *x* – *axis*



Example 7: Graph the Rational function
$$f(x) = \frac{x^2 - 3x - 4}{x^2 + 2x}$$

Solution 7:

on 7: $f(x) = \frac{x^2 - 3x - 4}{x^2 + 2x} = \frac{(x - 4)(x + 1)}{x(x + 2)}$

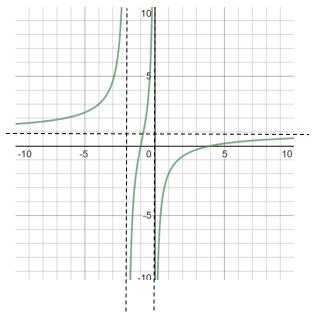
Vertical asymptote is: x = 0, -2

Horizontal asymptote is: y = 1

$$x - intercept = (-1, 0) and (4, 0)$$

$$y - intercept = (no \ y - intercept)$$

x	-0.1	0.1	-2.1	-1.9	100	-100
f(x)	8	8–	8	8–	1-	1+



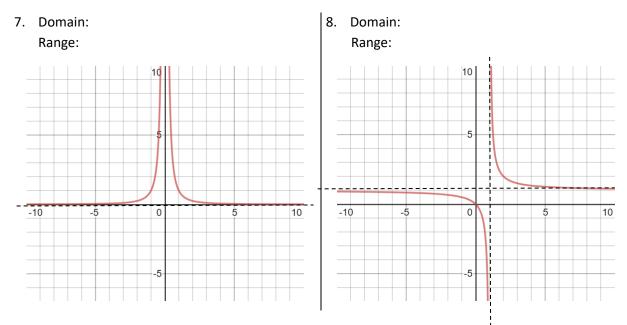
• You can see the graph crosses the Horizontal Asymptote, but it doesn't matter, Horizontal Asymptotes are only at the extremes of positive and negative infinity on the x - axis

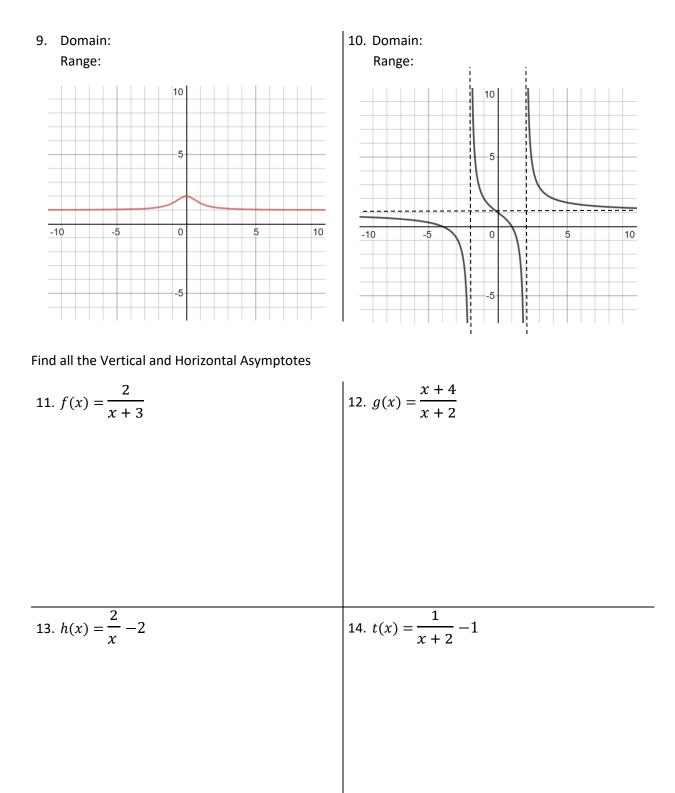
Section 3.7 – Practice Problems

Find the *x* and *y* intercepts of the following rational functions

$1. y = \frac{x+4}{x-1}$	2. $y = \frac{x}{x+3}$
3. $y = \frac{(x-1)(x+4)}{(x+2)(x-2)}$	$4. y = \frac{3}{x+2}$
5. $y = \frac{1}{x^2 + 1}$	$6. y = \frac{1}{x^2 - 4}$

Determine the Domain and Range of the following graphs

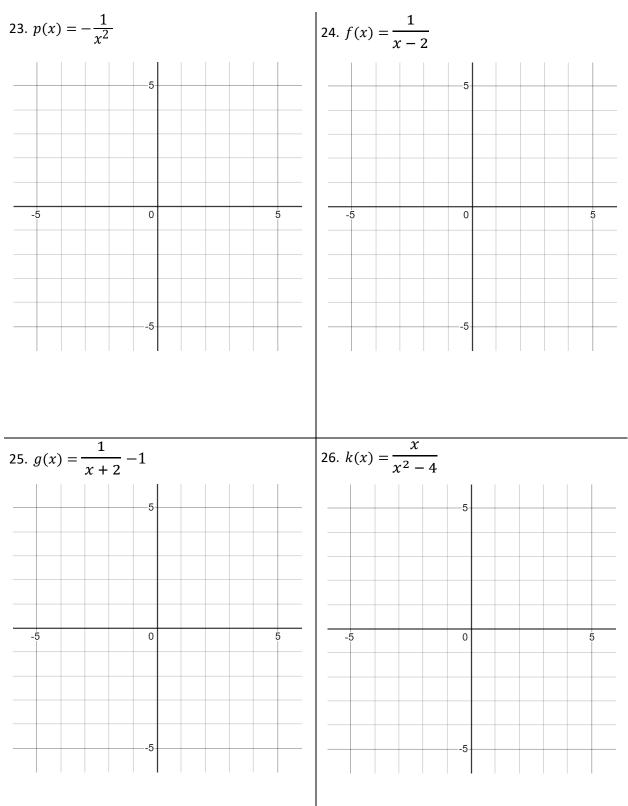


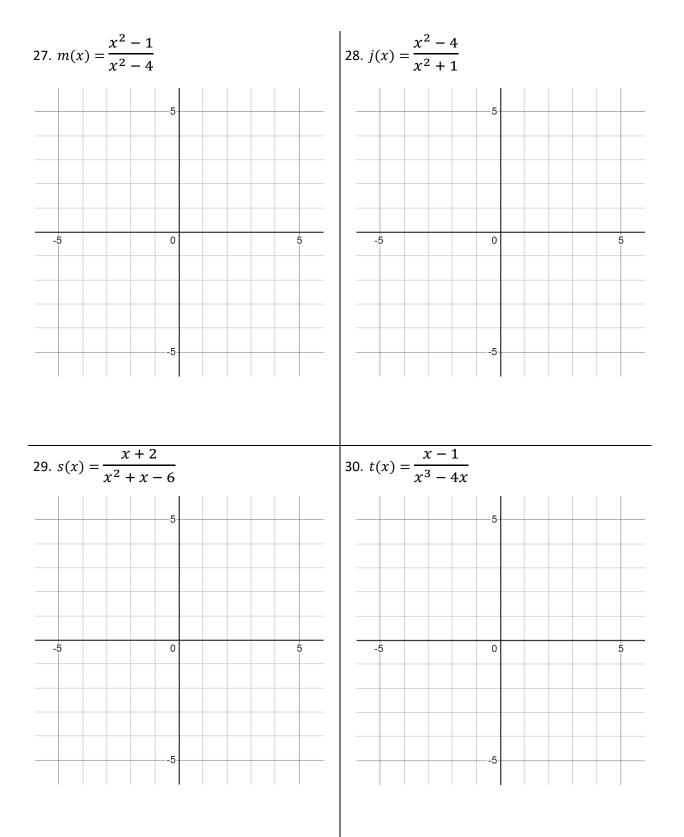


15.
$$j(x) = \frac{2x^2 - 2}{x^2 - 4}$$

16. $k(x) = \frac{3x + 4}{2x - 5}$
17. $l(x) = \frac{x - 1}{x^2 - 1}$
18. $m(x) = \frac{-3x^2 - 3x + 6}{x^2 - 9}$
19. $n(x) = \frac{x^2 - 3x - 4}{x^2 + x - 6}$
20. $r(x) = \frac{1}{(x - 1)^2}$
21. $p(x) = \frac{x^2 - 4}{x^2 + 2x - 3}$
22. $q(x) = \frac{x^2 - 4x + 3}{2x^2 - 8x}$

Sketch the graph of the following functions. Label the asymptotes.





Answer	Key – Section	3.7
--------	----------------------	-----

1.	(-4,0), (0, -4)
2.	(0,0)
3.	(-4,0),(1,0),(0,1)
4.	$(0,\frac{3}{2})$, No x – int
5.	(0,1), <i>No x</i> - <i>int</i>
6.	$(0, -\frac{1}{4}), No \ x - int$
7.	$D: x \neq 0$
	$R: y \ge 0$
	$x, y \ge 0$
8	$D: x \neq 1$
0.	
	$R: y \neq 1$
9	D: All Real Numbers
5.	
	$R: 1 < y \le 2$
10	$D: x \neq 2, -2$
10.	R: All Real Nmbers
	A. All Neul Milbers
11	x = -3, y = 0
_	x = 0, y = 0
12	x = -2, y = 1
13.	x = 0, y = -2
14.	x = -2, y = -1

15. $x = -2, 2, y = 2$
16. $x = \frac{5}{2}, y = \frac{3}{2}$
17. $x = -1, 1, y = 0$
18. $x = -3, 3, y = -3$
19. $x = -3, 2, y = 1$
20. $x = 1, y = 0$
21. $x = -3, 1, y = 1$
22. $x = 0, 4, y = \frac{1}{2}$
23. See Website
24. See Website
25. See Website
26. See Website
27. See Website
28. See Website
29. See Website
30. See Website

Extra Work Space