Section 3.6 - Determining Capacity and Solving Problems

- Volume is the quantity of space that a 3D object fills
- It can have units in many different forms ($\mathrm{cm}, m, \mathrm{~kg}, \mathrm{~L}, \mathrm{etc}$.)
- Capacity is when we describes the contents of a container and how much it can hold.
- It has units that describe quantities ($g, k g, m L, L, e t c$.)
- For the sake of this section we will talk in metric units representing liquid ($m L$ and L)

Conversions Again

- There are some particular conversions that are important when working with capacity
- They are:

$1 \mathrm{~mL}=1 \mathrm{~cm}^{3}$	$1 \mathrm{~m}^{3}=1000 \mathrm{~L}$
$1 L=1000 \mathrm{~cm}^{3}$	$1 \mathrm{~cm}^{3}=1000 \mathrm{~mm}^{3}$
$1 \mathrm{~L}=1000 \mathrm{~mL}$	1 L weighs 1 kg

Example 1: The a juice box has dimensions $38 \mathrm{~mm} \times 118 \mathrm{~mm} \times 52 \mathrm{~mm}$. It says it holds 200 mL of juice. Is this an accurate statement?

Solution 1:

First we calculate the volume in mm^{3}
$38 \cdot 118 \cdot 52=\mathbf{2 3 3} \mathbf{1 6 8} \mathrm{mm}^{\mathbf{3}}$

With cm^{3} it is a direct conversion to mL

$$
233.2 \mathrm{~cm}^{3}=\mathbf{2 3 3} .2 \mathrm{~mL}
$$

What could be a reason for the discrepancy in the capacity calculated and the amount of juice advertised?

The thickness of the packaging!!

Setting up your conversion ratio:

Consider the units you have. Then find the ratio including those units and the units you want.

In this case we have mm^{3} we will need to get to cm^{3} before we can make the final conversion to $m L$.

When you have the desired ratio, set it up so the units you want to cancel are on the bottom.

$$
\begin{aligned}
& 233168 \mathrm{~mm} \cdot \frac{1 \mathrm{~mm}^{3}}{1000 \mathrm{~mm}} \\
& \frac{\text { Millimeters }}{\text { cancel }} \\
& \frac{233168}{1000} \mathrm{~cm}^{3}=\mathbf{2 3 3 . 2} \mathrm{cm}^{3}
\end{aligned}
$$

Example 2: Fernando works on a farm. There is a massive silo on the farm that needs to be filled with feed before the winter. The silo is in the shape of a cylinder with a spherical roof. What is the capacity, in Litres, of the top half-sphere? The cylinder? The total silo?

Solution 2:

Volume of the Cylinder:

$$
\pi r^{2} \cdot h \quad \rightarrow \quad \pi(5)^{2} \cdot 12 \quad \rightarrow \quad \mathbf{9 4 2 . 5} \boldsymbol{m}^{\mathbf{3}}
$$

Total Volume

$$
942.5+523.6=1466.1 \mathrm{~m}^{3}
$$

Capacity

Recall: $1 m^{3}=1000 L$

$$
1466.1 \mathrm{~m}^{3} \cdot \frac{1000 \mathrm{~L}}{1 m^{3}}=
$$

1466100 Litres

Example 3: What is the capacity, in $m L$, of a cone shaped cup with radius 9 cm and height of 15 cm ?

Solution 3:

Volume of the Cone:

$\frac{1}{3} \pi r^{2} \cdot h \quad \rightarrow \quad \frac{1}{3} \pi(9)^{2} \cdot 15 \rightarrow 1272.3 \mathrm{~cm}^{3}$

Capacity

Recall: $1 \mathrm{~cm}^{3}=1 \mathrm{~mL}$

$$
1272.3 \mathrm{~cm}^{3}=1272.3 \mathrm{~mL}
$$

Section 3.6 - Practice Problems

1. Annika is selling drinks for a Leadership Fundraiser. The compostable eco-friendly cups she is using are in the shape of a cone. They have a diameter of 5.6 cm and a height of 8.5 cm . Determine the capacity of the cups in $m L$.
2. A new Covid-19 vaccine is being delivered by cylindrical capsule medication with sphere tops as shown in the diagram. How much medication can the capsule hold:
a) Determine volume to the nearest cubic centimeter

b) What is the capacity of the capsule in $m L$?
3. A spherical gas storage tank has an inner radius of 10 m . Determine its capacity to the nearest litre. How much does the gas weigh in tonnes (1tonne $=1000 \mathrm{~kg}$)
4. A rectangular tuna tin has a capacity of 180 mL . If it has a height of 3 cm and the width is 7.5 cm , how big is the length of the tin?
5. Determine the capacity of the barn below in Litres.

6. What is the capacity, in millilitres, of a sphere with a radius of 38 mm .
7. What is the capacity of this massive cone in $m L$?

Section 3.6 - Answer Key

1.	69.7 mL
2.	a) $1.5 \mathrm{~cm}^{3} \quad$ b) 1.5 mL
3. $4188790.2 \mathrm{~L} ; 4188.8$ tonnes	
4. $l=8 \mathrm{~cm}$	
5. 52500 L	
6. 229.8 mL	
7.	314159265.4 mL

