Section 3.6 – Applications of Rational Equations

This booklet belongs to:______Block: _____

- Problem solving is challenging because we don't have specific rules to follow
- There are some general guidelines that may help with this endeavor

Strategy for Solving Word Problems

- 1. Read the problem careful, sometimes a number of times. Identify what info is given
- 2. Let a variable represent the unknown information, and represent every else in terms of it
- 3. If possible/necessary make a diagram or drawing
- 4. Write an equation relating your unknown quantities to what you are given
- 5. Solve the equation
- 6. Check your solutions in terms of the original problem to make sure your answer makes sense

Example 1: The sum of a number and twice its reciprocal is $\frac{9}{2}$. Find the number.

Solution 1: Let *x* be the number

 $\frac{1}{x}$ is the reciprocal of the number so: $\frac{2}{x}$ is twice the reciprocal

$$x + \frac{2}{x} = \frac{9}{2} \quad , \qquad x \neq 0$$

$$2x\left(x+\frac{2}{x}\right) = 2x\left(\frac{9}{2}\right) \to 2x^{2}+4 = 9x \to 2x^{2}-9x+4 = 0$$

(x-4)(2x-1) = 0 so: x = 4 or x = $\frac{1}{2}$

Check:

$$4 + \frac{2}{4} = \frac{9}{2} \qquad or \qquad \frac{1}{2} + \frac{2}{\frac{1}{2}} = \frac{9}{2}$$
$$\frac{9}{2} = \frac{9}{2} \qquad or \qquad \frac{1}{2} + 4 = \frac{9}{2} \rightarrow \frac{9}{2} = \frac{9}{2}$$

Therefore both x = 4 or $x = \frac{1}{2}$ are solutions.

Pre-Calculus Math 11

Matt and Niki ride a bicycle a distance of 4km each morning. They both finish at the Example 2: same time, but Niki starts 1 minute before Matt, and Matt travels 1km/hr faster than Niki. At what speed are they travelling?

Niki's time minus Matt's time is $1 \text{ minute or } \frac{1}{60} \text{ hour.}$ Solution 2:

$Speed = \frac{Distance}{Time}$ so $Time = \frac{Distance}{Speed}$		Speed	Distance	Time
Time Speed	Niki	x	4km	4
				x
$\frac{4}{x} - \frac{4}{x+1} = \frac{1}{60} \to 60x(x+1)\left(\frac{4}{x} - \frac{4}{x+1} = \frac{1}{60}\right)$	Matt	<i>x</i> + 1	4km	$\frac{4}{x+1}$

 $240(x+1) - 240x = x(x+1) \quad \rightarrow \quad 240x + 240 - 240x = x^2 + x$

$x^2 + x - 240 = 0$	
(x+16)(x-15) = 0	So Niki travels $15 km/hr$ and Matt travels $16 km/hr$
x = -16 or 15 (Reject $x = -16 km/hr$)	L

Example 3: The cold water tap can fill a container two hours faster than the hot water tap. The two taps together can fill the container in 80 *minutes*. How long does it take each tap to fill the container on its own?

Let x = # of hours it takes for the cold water tap to fill the container alone Solution 3:

Let x + 2 = # of hours it takes for the cold water tap to fill the container alone

$80 \ minutes = \frac{4}{3} \ hours$		Cold	Hot	Total
3	Time (hrs)	x	<i>x</i> + 2	$\frac{4}{3}$
Cold Hot Together				3
$\frac{1}{x} + \frac{1}{x+2} = \frac{3}{4} \to 4x(x+2)\left(\frac{1}{x} + \frac{1}{x+2} = \frac{3}{4}\right)$	Rate (per hr)	$\frac{1}{x}$	$\frac{1}{x+2}$	$\frac{3}{4}$
$4(x+2) + 4x = 3x(x+2) \rightarrow 4x + 8 + 4x = 3x^{2} + 3x^{2}$	6 <i>x</i>			
$3x^2 - 2x - 8 = 0$				
(3x+4)(x-2) = 0				
$x = -\frac{4}{3} \text{ or } 2$ (<i>Reject</i> $x = -\frac{4}{3}$)	So Cold Water Tap t Hot Water Tap ta			

2

Hot Water Tap takes 4 hours alone

Adrian Herlaar, School District 61

- **Example 4:** A car travels from home to work at an average speed of 60km/hr, and because of traffic returns from work at an average speed of 40km/hr. What is the average speed for the entire trip?
- **Solution 4:** The time to travel $d \ km$ going to work is: $\frac{d}{60}$ hours

$$Time = \frac{Distance}{Speed}$$

The time to travel $d \ km$ returning from work is: $\frac{d}{40}$ hours

At an average speed of $x \, km/hr$, the time to travel $2d \, km$ is: $\frac{2d}{x}$ hours

Time_{going to work} + Time_{returning from work} = Time_{total time of trip}

 $\frac{d}{60} + \frac{d}{40} = \frac{2d}{x} \quad (since \ d \ is \ constant \ the \ distnce \ is \ irrelevant, so \ let \ d = 1)$ $\frac{1}{60} + \frac{1}{40} = \frac{2}{x} \quad \rightarrow \qquad 120x \left(\frac{1}{60} + \frac{1}{40}\right) = 120x \left(\frac{2}{x}\right)$ $2x + 3x = 240 \quad \rightarrow \qquad 5x = 240 \quad \rightarrow \qquad x = 48$

Therefore the average speed is: 48km/hr

- **Example 5:** It takes Aaron 9 *hours* longer than Chris to paint a house. Working together they can do the job in 20 *hours*. How long would it take each person, working alone, to paint the house?
- **Solution 5:** Let x = the number of hours Chris needs to cmoplete the job alone

Let x + 9 = the number of hours Aaron needs to complete the job alone

Then Chris completes $\frac{1}{x}$ of the job in one hour and Aaron completes $\frac{1}{x+9}$ of the job in one hour

In 20 hours, Chris completes $\frac{20}{x}$ of the job and Aaron completes $\frac{20}{x+9}$ of the job In 20 hours, Chris and Aaron together complete $\frac{20}{20}$ of the job = 1

$$\frac{20}{x} + \frac{20}{x+9} = 1 \quad \rightarrow \quad x(x+9)\left(\frac{20}{x} + \frac{20}{x+9}\right) = x(x+9) \quad \rightarrow \quad 20(x+9) + 20x = x(x+9)$$

$$20x + 180 + 20x = x^2 + 9x \quad \rightarrow \quad x^2 - 31x - 180 = 0 \quad \rightarrow \quad (x-36)(x+5) = 0$$

$$x = 36 \quad or \quad -5 \qquad (Reject \ x = -5)$$

Therefore Chris takes 36 *hours* and Aaron takes 45 *hours* to finish the job alone. $\frac{3}{3}$

- Example 6: A speed boat can travel 108km downstream in the same time it can travel 78km upstream. If the current in the river is 10km/hr what is the speed of the boat in still water?
- $Speed = \frac{Distance}{Time}$ so $Time = \frac{Distance}{Speed}$ Solution 6: Speed in still water is x km/hr Speed with the current is (x + 10)km/hrSpeed against the current is (x - 10)km/hr

	Speed	Distance	Time
With	<i>x</i> + 10	108km	108
Current			$\overline{x+10}$
Against	<i>x</i> – 10	78km	78
Current			$\overline{x-10}$

Time is equal is both situations so: $Time_{with \ current} = Time_{against \ current}$

$$\frac{108}{x+10} = \frac{78}{x-10} \quad \rightarrow \quad 108(x-10) = 78(x+10)$$

 $108x - 1080 = 78x + 780 \rightarrow 30x = 1860$ x = 62 \rightarrow

Therefore the speed of the boat in still water is 62km/hr

Section 3.6 – Practice Problems

Unknown number problems

1.	The sum of a number and its reciprocal is $\frac{13}{6}$. Find the number.	2.	Find two consecutive even integers whose reciprocals add to $\frac{7}{24}$
3.	Find two consecutive odd integers whose reciprocals add to $\frac{8}{15}$	4.	A number added to the product of 6 and the reciprocal of that number is -5. Find the number.

Work Problems

5.	It would take Sue 4 hours to paint a large room, and it would take Bob 5 hours to paint the same room. If they work together, how long would it take them to complete the job?	6.	Jane works twice as fast as her daughter Anna. If it takes 15 minutes to clean the kitchen together, how long would it take Anna to clean the kitchen by herself?
7.	Ken takes 3 hours longer to assemble a motor than Hans. When working together, it takes them 2 hours to assemble the motor. How long would it take Ken to do the job alone?	8.	A cold water tap can fill a tub in 6 minutes, and a hot water tap can fill the tub in 8 minutes. A drain can empty the full tub in 10 minutes. If both the taps are on and the drain is open, how long will it take to fill the tub? (Complete waste of water)

Distance Problems

9.	A boat travels 40km downstream in the same time it takes to travel 30km upstream. If the current flows at 6km/h, what is the speed of the boat in still water?	10.	The speed of a boat in Stillwater is 10 <i>mph</i> . The boat travels 24 <i>miles</i> upstream and back downstream in a total of 5 <i>hours</i> . What is the speed of the current?
11.	A woman drives to work at an average speed of 50mph. The average speed of the return trip home is 30mph. What is the average speed of the round trip?	12.	On a 100km round trip, Jessica averages 40km/h to her destination and 60km/h returning. What is the average speed for the entire trip?

Answer Key – Section 3.6

1.	$x = \frac{3}{2} and x = \frac{2}{3}$
2.	n = 6; numbers are 6 and 8
3.	n = 3; numbers are 3 and 5
4.	x = -3 and - 2
5.	Together takes $2\frac{2}{9}$ hours
6.	Anna takes 45 minutes alone
7.	Ken takes 6 hours alone
8.	$5\frac{5}{23}$ minutes
9.	Boat Speed: 42km/hr
10.	Current Speed: 2miles/hr
11.	x = 37.5 km/hr
12.	x = 48 km/hr

Pre-Calculus Math 11

Extra Work Space