Section 3.5 - Applications of Polynomial Equations

- The scenarios described in this section answer, 'when will I use this in life'
- I understand that you will probably never use the examples that follow, but the point is that when your mathematics becomes advanced enough, you will find yourself in scenarios where you do use it.
- It is very real that basic numeracy and an understanding of probability and statistics will be present more regularly, but do not pigeon-hole yourself just yet!

Example 1: A box is constructed such that the length is twice the width and the height is 2 cm longer than the width, with a volume of $350 \mathrm{~cm}^{3}$. Find the dimensions of the box.

Solution 1: \quad Volume of a Box $=$ Length x Width x Height
Solving for all three variables at once is not manageable. So, what we need is to express the variables with respect to one of them.

In this case, let width be $x: \quad$ That means: Width $=x$, Length $=2 x$, Height $=x+2$

Example 2: A vitamin capsule has the shape of a right circular cylinder with hemispheres on each end. The total length of the capsule is 14 mm , and its volume is $108 \pi \mathrm{~mm}^{3}$. Find the radius x of the capsule.

Solution 2: First consider the shape of the capsule. Drawings are helpful!

Example 3: An open rectangular box is constructed by cutting a square of length x from each corner of a 12 cm by 15 cm rectangular piece of cardboard, then folding up the sides. What is the length of the square that must be cut from each corner if the volume is $112 \mathrm{~cm}^{3}$ (x must be greater than 1)?

Solution 3:

Section 3.5 - Practice Problems

1. An open top rectangular box is constructed by cutting a square length x from each corner of a 12 cm by 15 cm rectangle, and then folding up the sides with $x \geq 2 \mathrm{~cm}$. What size square must be cut to have a volume of $162 \mathrm{~cm}^{3}$?
2. What length must be cut if the volume of the box in question 1 is $150 \mathrm{~cm}^{3}$.

Once Calculated, Plug the Function into DESMOS. Not Factorable using the Rational Root Theorem.
3. A silo is shaped like a cylinder topped by a hemisphere. The overall height of the silo is 12 m . Find the radius if the volume is $360 \pi m^{3}$. $V_{\text {Cylinder }}=\pi r^{2} h$ and $V_{\text {Sphere }}=\frac{4}{3} \pi r^{3}$
4. A right triangle has a hypotenuse 1 cm longer than one of the sides. Find the length of the sides if the area of the triangle is $6 \mathrm{~cm}^{2}$.
Pythagorean Theorem $=a^{2}+b^{2}=c^{2}$
Area of a Triangle $=\frac{1}{2} b h$
5. A box is $1 m$ by $2 m$ by $3 m$. If each side is increased by the same amount, how much must you increase these sides to make the volume 10 times larger.
6. A box measures $(1 \cdot 1 \cdot 2) \mathrm{m}$. Each side is increased the same amount. How much is this increase if the volume is increased by six times the original volume.

Once Calculated, Plug the Function into DESMOS. Not Factorable using the Rational Root Theorem.
7. An open top box is made from a piece of cardboard measuring $\operatorname{Sin} x$ 8in. Cutting out squares from each corner and folding the edges up makes a box with a volume of $14 \mathrm{in}^{3}$. How large a square must be cut from each corner?
8. The production of x units produces revenue. $R(x)=100 x-x^{2}$ and costs of $C(x)=\frac{1}{3} x^{3}-6 x^{2}+89 x+100$. At what point does the company make a profit? (Profit begins when Revenue $=$ Cost)
9. A shed is constructed in the shape of a cube with a triangular prism forming the roof. The total height of the shed is 6 m , with a volume of $80 \mathrm{~m}^{3}$. Find the length of the sides of the shed. Volume $_{\text {Cube }}=x^{3}$ Volume $_{\text {Triangular Prism }}=\frac{1}{2} l w h$

Once Calculated, Plug the Function into DESMOS. Not Factorable using the Rational Root Theorem.
10. An open box is made from a piece of cardboard $\operatorname{9in} x 15$ in, by cutting equal square corners and turning up the sides. Find the maximum volume of the box. (Think Max/Min for Parabolas)
11. A box has a square base; the perimeter of the base plus the height is 120 cm . What length of the base yields a volume of $13500 \mathrm{~cm}^{3}$?
12. Calculate the maximum volume of the box in the previous question. To achieve this maximum, what are the dimensions of the box?

Extra Work Space

