Section 3.4 - Practice Problems
Find the volume of each shape. Round the answer to nearest tenth. ( use $\pi=3.14$ )

2)
3)


$$
\begin{aligned}
& \text { Volume }=\frac{113040 \mathrm{ft}^{3}}{3} \\
& V=\frac{4}{3} \pi r^{3} \\
& r=\frac{60}{2}=30
\end{aligned}
$$

$$
V=(3.14)(11)(41)
$$

$$
v=1416.14
$$

4) 



$$
\text { Volume }=23125^{3}{ }^{3}
$$

$25 \cdot 25 \cdot 37$
5)


Triangle is half rectangle so

6)

7)

8)
9)


$$
\begin{aligned}
& \text { Volume }=25835.9 y d^{3} \text { Volume }=2600 \mathrm{ft}^{3} \\
& \frac{1}{3} \pi r^{2} h \quad 13.8 .25 \\
& \frac{1}{3}(3.14)(22)^{2} /(51) \quad
\end{aligned}
$$



$$
\text { Volume }=12720 \mathrm{in}^{3}
$$

$$
\text { Volume }=
$$

$$
\frac{20 \cdot 24}{2} \cdot 53
$$

10. Tennis balls are sold in a cylindrical container. There are 3 balls in each container. If the balls have a radius of 3.4 cm and fits perfectly in the container side to side and top to bottom, determine:
a) The volume of one ball. Round to the nearest tenth

$$
V=\frac{4}{3} \pi r^{3}
$$


b) The dimensions and the volume of the container, to the nearest tenth.

$$
\begin{array}{ll}
h=20.4 & V=\pi r^{2} \cdot h \\
r=3.4 & \pi(3.4)^{2} \cdot 20.4
\end{array}
$$

