Section 3.4 – Volume

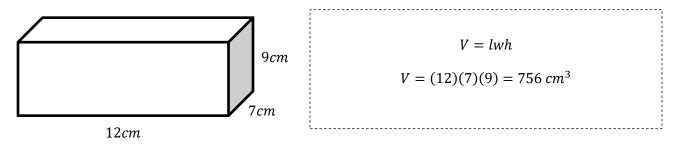
Volume

- Volume is the space that takes up the inside of a 3D shape
- Intuitively it is the **AREA of the BASE** of the figure times the **HEIGHT**
- The space you can fill with water, sand, yogurt, air, etc.
- Requires 3-axes of direction, 3D

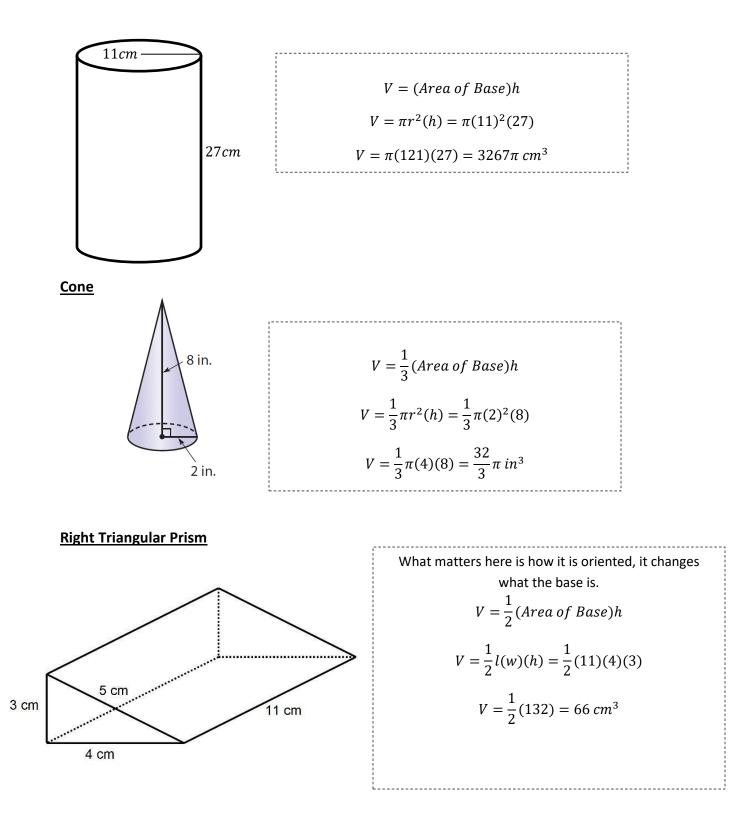
3-D shapes have units cm^3

Some Basic Volume Formulas

•	Cube	a ³	where a is the side length of the cube
٠	Rectangular Prism	l * w * h	
•	Cylinder	$\pi r^2 h$	
•	Triangular Prism	<u>l*w*h</u> 2	


> For Volume it is substituting the numbers into the equations and solving for unknowns

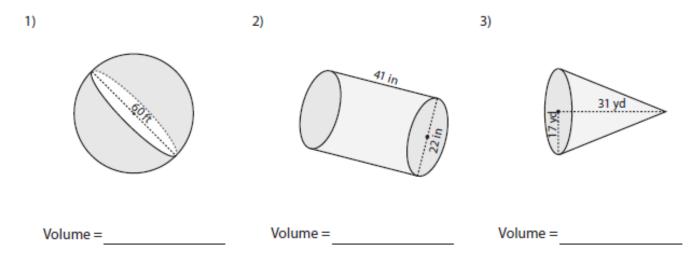
> See the list of Surface Area and Volume Equations in the Table provided on page

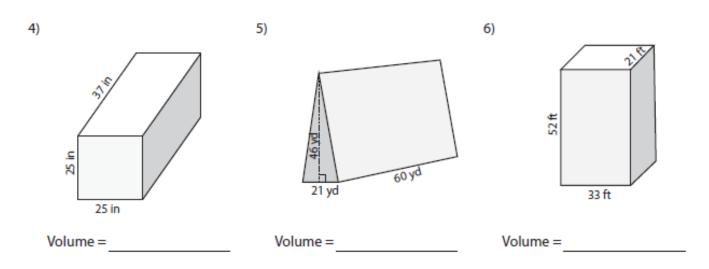

Examples:

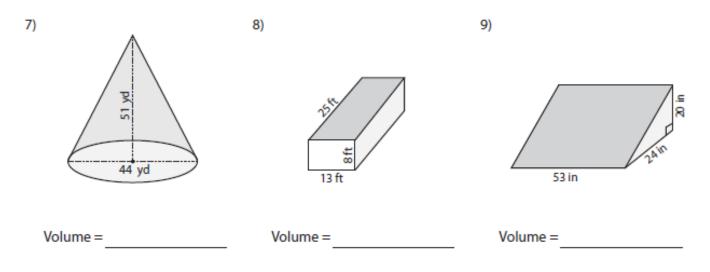
Find the Volume of the Following Shapes

Rectangular Prism

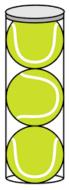
Cylinder




Geometric Solid	Surface Area	Volume
Cylinder	$A_{top} = \pi r^{2}$ $A_{base} = \pi r^{2}$ $A_{side} = 2\pi rh$ $SA = 2\pi r^{2} + 2\pi rh$	$V = (area of base) \times h$
Sphere	$SA = 4\pi r^2$ or $SA = \pi d^2$	$V = \frac{4}{3}\pi r^3$
Cone	$A_{side} = \pi rs$ $A_{base} = \pi r^{2}$ $SA = \pi r^{2} + \pi rs$	$V = \frac{1}{3} \times (\text{area of base}) \times h$
Square-Based Pyramid	$A_{triangle} = \frac{1}{2}bs$ (for each triangle) $A_{base} = b^2$ $SA = 2bs + b^2$	$V = \frac{1}{3} \times (\text{area of base}) \times h$
Rectangular Prism	SA = wh + wh + lw + lw + lh + lh or SA = 2(wh + lw + lh)	$V = (area of base) \times h$
General Right Prism	SA = the sum of the areas of all the faces	$V = (area of base) \times h$
General Right Pyramid	SA = the sum of the areas of all the faces	$V = \frac{1}{3} \times (\text{area of base}) \times h$


Surface Area and Volume General Formula Sheet

Section 3.4 – Practice Problems


Find the volume of each shape. Round the answer to nearest tenth. (use $\pi = 3.14$)

- 10. Tennis balls are sold in a cylindrical container. There are 3 balls in each container. If the balls have a radius of 3.4*cm* and fits perfectly in the container side to side and top to bottom, determine:
 - a) The volume of one ball. Round to the nearest tenth

b) The dimensions and the volume of the container, to the nearest tenth.

Section 3.4 – Answer Key

- 1. $113\ 097.3ft^3$
- 2. $15\,585.4in^3$
- 3. 9381.8*yd*³
- 4. $23 \ 125 in^3$
- 5. $28\,980yd^3$
- 6. $36\,036ft^3$
- 7. $25 849.0 yd^3$
- 8. $2600 ft^3$
- 9. $12720in^3$
- 10. a) 164.6*cm*³ b) 740.9*cm*³