Section 3.4 - Volume

Volume

- Volume is the space that takes up the inside of a 3D shape
- Intuitively it is the AREA of the BASE of the figure times the HEIGHT
- The space you can fill with water, sand, yogurt, air, etc.
- Requires 3-axes of direction, 3D

Some Basic Volume Formulas

- Cube
$a^{3} \quad$ where a is the side length of the cube
- Rectangular Prism

$$
l * w * h
$$

- Cylinder

$$
\pi r^{2} h
$$

- Triangular Prism

$$
\frac{l * w * h}{2}
$$

> For Volume it is substituting the numbers into the equations and solving for unknowns
$>$ See the list of Surface Area and Volume Equations in the Table provided on page

Examples:

Find the Volume of the Following Shapes

Rectangular Prism

Cylinder

Cone

$$
V=\frac{1}{3}(\text { Area of Base }) h
$$

$$
V=\frac{1}{3} \pi r^{2}(h)=\frac{1}{3} \pi(2)^{2}(8)
$$

$$
V=\frac{1}{3} \pi(4)(8)=\frac{32}{3} \pi i n^{3}
$$

Right Triangular Prism

Surface Area and Volume General Formula Sheet

Geometric Solid	Surface Area	Volume
Cylinder	$\begin{aligned} & A_{\text {top }}=\pi r^{2} \\ & A_{\text {base }}=\pi r^{2} \\ & A_{\text {side }}=2 \pi r h \\ & S A=2 \pi r^{2}+2 \pi r h \end{aligned}$	$V=($ area of base $) \times h$
Sphere	$S A=4 \pi r^{2}$ or $S A=\pi d^{2}$	$V=\frac{4}{3} \pi r^{3}$
Cone	$\begin{aligned} & A_{\text {side }}=\pi r s \\ & A_{\text {base }}=\pi r^{2} \\ & S A=\pi r^{2}+\pi r s \end{aligned}$	$V=\frac{1}{3} \times(\text { area of base }) \times h$
Square-Based Pyramid	$\begin{aligned} & A_{\text {triangle }}=\frac{1}{2} b s \text { (for each triangle) } \\ & A_{\text {base }}=b^{2} \\ & S A=2 b s+b^{2} \end{aligned}$	$V=\frac{1}{3} \times(\text { area of base }) \times h$
Rectangular Prism l	$S A=w h+w h+l w+l w+l h+l h$ or $S A=2(w h+l w+l h)$	$V=($ area of base $) \times h$
General Right Prism	$\begin{gathered} S A=\text { the sum of the areas } \\ \text { of all the faces } \end{gathered}$	$V=($ area of base $) \times h$
General Right Pyramid	$\begin{gathered} S A=\text { the sum of the areas } \\ \text { of all the faces } \end{gathered}$	$V=\frac{1}{3} \times(\text { area of base }) \times h$

Section 3.4 - Practice Problems

Find the volume of each shape. Round the answer to nearest tenth. (use $\pi=3.14$)
1)

$$
\text { Volume }=
$$

4)

Volume $=$ \qquad
5)

Volume $=$ \qquad
3)

Volume $=$ \qquad
6)

Volume $=$ \qquad
7)

8)

9)

Volume $=$ \qquad
10. Tennis balls are sold in a cylindrical container. There are 3 balls in each container. If the balls have a radius of 3.4 cm and fits perfectly in the container side to side and top to bottom, determine:
a) The volume of one ball. Round to the nearest tenth

b) The dimensions and the volume of the container, to the nearest tenth.

Section 3.4 - Answer Key

1. $113097.3 \mathrm{ft}^{3}$
2. $15585.4 \mathrm{in}^{3}$
3. $9381.8 y d^{3}$
4. 23125 in 3
5. $28980 y d^{3}$
6. $36036 f^{3}$
7. $25849.0 y d^{3}$
8. $2600 f^{3}$
9. $12720 \mathrm{in}^{3}$
10. a) $164.6 \mathrm{~cm}^{3}$
b) $740.9 \mathrm{~cm}^{3}$
