Section 3.4 – Remainder and Factor Theorems

The Remainder Theorem

• If we consider the divided form of a polynomial:

f(x) = (x - a)q(x) + r, where r is a constant or 0

• If we evaluate f(x) at x = a then:

$$f(a) = (a - a)q(x) + r$$
$$f(a) = r$$

• What this means is that the value of a polynomial at x = a is the same as the remainder when we divide by (x - a). This has big connotations for a remainder of zero!

Remainder Theorem

If the polynomial P(x) is divided by x - a, the remainder is P(a).

Example 1:	Without dividing, what is the remainder when $P(x) = 2x^4 - 3x^3 + 2x - 3$ is
	divided by $x - 2$?

Solution 1:

By Remainder Theorem	By Synthetic Division					
$P(x) = 2x^4 - 3x^3 + 2x - 3$	2	2	-3	0	2	-3
$P(2) = 2(2)^4 - 3(2)^3 + 2(2) - 3$			4	2	4	12
P(2) = 9		2	1	2	6	9
- (-)					Re	emainder

Example 2: For what value of k will the remainder be 5 when $P(x) = x^3 - 2x^2 + x + k$ is divided by x - 2?

Solution 2:

By Remainder Theorem	By Synthetic Division
$P(x) = x^3 - 2x^2 + x + k$	<u>2</u> 1 -2 1 k
$P(2) = (2)^3 - 2(2)^2 + (2) + k = 5$	2 0 2
8 - 8 + 2 + k = 5	1 0 1 k+2
k = 3	$k + 2 = 5 \rightarrow k = 3$

- **Example 3:** Find the remainder when $x^{17} 2x^{12} + 7$ is divided by x + 1
- **Solution 3:** By Synthetic Division, this would be a nightmare, so the Remainder Theorem is extremely helpful!

Divided by x + 1 means that x = -1, so calculate P(-1) to get the remainder

$$P(x) = x^{17} - 2x^{12} + 7$$
$$P(-1) = (-1)^{17} - 2(-1)^{12} + 7$$
$$P(-1) = -1 - 2 + 7 = 4$$

The Remainder is 4.

Next, we will see how having a Remainder of Zero helps us determine a Factor

The Factor Theorem

- This follows directly from the Remainder Theorem and was alluded to.
- If the Polynomial P(x) is **divded by** (x a) and the **remainder is zero**, then (x a) **divides the Polynomial** and **is a Factor** of the Polynomial

Example 4: Given $P(x) = 3x^4 + 4x^3 - 3x^2 - 3x - 10$. Is (x + 2) a factor of P(x)?

Solution 4: Using the Remainder Theorem, it should follow that if (x + 2) is a factor, then should give us: P(-2) = 0

$$P(-2) = 3(-2)^4 + 4(-2)^3 - 3(-2)^2 - 3(-2) - 10$$
$$P(-2) = 3(16) + 4(-8) - 3(4) - 3(-2) - 10$$
$$P(-2) = 48 - 32 - 12 + 6 - 10 = 0$$

So that means that yes, (x + 2) is a factor and we can use Synthetic Division to factor it out.

-2	3	4	-3	-3	-10	We end up with:
		-6	4	-2	10	$(x+2)(3x^3-2x^2+x-5)$
	3	-2	1	-5	0	

In the next Section, we will see how we can estimate potential roots so we could continue this process

Example 5: Given $P(x) = 3x^4 + 4x^3 - 3x^2 - 3x - 10$. Is (x - 1) a factor of P(x)?

Solution 5: Using the Remainder Theorem, it should follow that if (x - 1) is a factor, then should give us: P(1) = 0

$$P(1) = 3(1)^4 + 4(1)^3 - 3(1)^2 - 3(1) - 10$$
$$P(1) = 3 + 4 - 3 - 3 - 10 = -9$$

So that means that **no**, (x - 1) **is not a factor** and we can use Synthetic Division to check.

• From the above examples, we can state that:

Factor Theorem

If *P* is a continuous Polynomial Function. Then P(x) has a factor of (x - a) if, and only if, P(a) = 0. The if and only if portion of the definition implies two separate but necessary parts of the Theorem.

1. If P(a) = 0 then (x - a) is a factor of P(x)

2. If (x - a) is a factor of P(x), then P(a) = 0

Example 6: Given $P(x) = x^3 - 2x^2 + 3x - 6$. Is (x - 2) a factor of P(x)?

Solution 6: Using the Remainder Theorem, it should follow that P(2) = 0 if (x - 2) is a factor

$$P(2) = (2)^3 - 2(2)^2 + 3(2) - 6$$
$$P(2) = 8 - 8 + 6 - 6 = 0$$

So that means that **yes**, (x - 2) is a factor and we can use Synthetic Division to check.

Example 7: Given $P(x) = 2x^4 - 3x^2 + x - 1$. Is (x + 1) a factor of P(x)?

Solution 7: Using the Remainder Theorem, it should follow that P(-1) = 0 if (x + 1) is a factor

$$P(-1) = 2(-1)^4 - 3(-1)^2 + (-1) - 1$$
$$P(-1) = 2 - 3 - 1 - 1 = -3$$

So that means that **no**, (x + 1) **is not a factor** and we can use Synthetic Division to check.

The Rational Root Theorem

- This is the last part to our work
- It allows us to estimate potential roots, then we can use the Remainder and Factor Theorem to fully factor our higher degree polynomials

Consider a *Polynomial* $P(x) = 3x^2 + 2x - 8$ if we recall Binomial Multiplication, we would be looking for the first two terms to multiply to 3 and the last two terms multiply to -8

That means we have the following possibilities:

$\frac{Possible Factors}{3x^2 + \dots - 8}$	Corresponding Zeros
$(3x \pm 1)(x \pm 8)$	$\pm \frac{1}{3}$ and ± 8
$(3x \pm 2)(x \pm 4)$	$\pm \frac{2}{3}$ and ± 4
$(3x \pm 4)(x \pm 2)$	$\pm\frac{4}{3}$ and ± 2
$(3x \pm 8)(x \pm 1)$	$\pm \frac{8}{3}$ and ± 1

• What this demonstrates is that the possible roots are related to the possible factors of the first and last terms.

$$\frac{possible\ factors\ of\ last\ term}{possible\ factors\ of\ first\ term} = \frac{\pm 1, \pm 2, \pm 4, \pm 8}{\pm 1, \pm 3}$$

$$\left\{\pm 1, \pm 2, \pm 4, \pm 8, \pm \frac{1}{3}, \pm \frac{2}{3}, \pm \frac{4}{3}, \pm \frac{8}{3}\right\}$$

Pre-Calculus 12

Example 8: Find the zeros (roots) of $f(x) = x^3 - 9x^2 + 20x - 12$

Solution 8: By the Rational Root Theorem, potential roots are:

$$\frac{factors \ of \ 12}{factors \ of \ 1} = \frac{\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12}{\pm 1} = \pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12$$

• Start with smaller numbers, 1, 2 if available.

$$f(1) = (1)^3 - 9(1)^2 + 20(1) - 12 = 1 - 9 + 20 - 12 = 0$$

We have a **remainder of zero when** x = 1 so (x - 1) **is a root**, use Synthetic Division to factor.

1
 1
 -9
 20
 -12

$$1$$
 -8
 12
 0

 Which can be factored easily to:
 $(x - 1)(x - 2)(x - 6)$
 $(x - 1)(x - 2)(x - 6)$

 Therefore, of the 12 possible roots, we get: $x = 1, 2, 6$

Example 9: Find the zeros (roots) of $f(x) = 4x^3 + 12x^2 + 5x - 6$ **Solution 9:** By the Rational Root Theorem, potential roots are: $\frac{factors of 6}{factors of 4} = \frac{\pm 1, \pm 2, \pm 3, \pm 6}{\pm 1, \pm 2, \pm 4} = \pm 1, \pm 2, \pm 3, \pm 6, \pm \frac{1}{2}, \pm \frac{1}{4}, \pm \frac{3}{2}, \pm \frac{3}{4}$

• Start with smaller numbers, 1, 2 if available. In this case x = 1 and x = -1 do not work.

$$f(-2) = 4(-2)^3 + 12(-2)^2 + 5(-2) - 6 = -32 + 48 - 10 - 6 = 0$$

We have a **remainder of zero when** x = -2 so (x + 2) **is a root**, use Synthetic Division to factor.

Twelve possible roots!

Pre-Calculus 12

Section 3.4 – Practice Problems

1.	Find $P(k)$.	
	a) $P(x) = x^4 + 3x^3 - 7x + 2; k = -2$	b) $P(x) = -2x^4 - 3x^2 - 2; k = \sqrt{2}$
	c) $P(x) = -2x^2 + 4x + 3; k = 1 + \sqrt{2}$	d) $P(x) = x^5 - 5a^4x + 4a^5; k = a$

- 2. Use the Remainder Theorem to solve for k and m.
 - a) When $x^3 + kx + 1$ is divided by x 2, the remainder is -3 b) When $x^3 - x^2 + kx - 8$ is divided by x - 4, the remainder is 0

c)	When $2x^4 + kx^2 - 3x + 5$ is divided by $x - 2$, the remainder is 3	d)	When $x^3 + kx + 6$ is divided by $x + 2$, the remainder is 4
e)	When $x^3 + kx^2 - 2x - 7$ is divided by $x + 1$, the remainder is 5. What is the remainder when it is divided by $x - 1$?	f)	When $kx^3 + mx^2 + x - 2$ is divided by $x - 1$, the remainder is 6. When the it is divided by $x + 2$, the remainder is 12.
g)	When $x^4 + kx^3 - mx + 15$ has no remainder when divided by $x - 1$ and $x + 3$.	h)	When $P(x) = 3x^4 + kx^2 + 7$ is divided by $x - 1$, the remainder is the same as when $f(x) = x^4 + kx - 4$ is divided by $x - 2$

3. Use the Remainder Theorem to solve the following:

a)	If a Polynomial equation $P(x)$ is divded by $x - a$, what is the value of its remainder?	b)	Given $P(x) = x^3 - rx^2 + 3x + r^2$, find all possible values of r so that P(3) = 18
c)	When the polynomial $x^n + x - 8$ is divided by $x - 2$, the remainder is 10. What is the value of n .	d)	When $x^2 + 5x - 2$ is divided by $x + a$, the remainder is 8. Find all possible values of a

- e) When the polynomial $P(x) = kx^{50} + 2x^{30} + 4x + 7$ is divided by x + 1, the remainder is 23. What is the value of k.
- f) Solve for k and m if $P(x) = 2x^3 + 3x^2 + kx + m$ and P(1) = 8 and P(-2) = -13.

4. Find the missing factors by using Synthetic Division

a)
$$2x^3 - 7x^2 + 2x + 3 = (x - 1)($$
)()

b)
$$x^3 - 3x^2 - 10x + 24 = (x - 2)($$
)()

c)
$$x^4 + x^3 - 9x^2 - 9x = x(x+1)($$
)()

d)
$$2x^4 - 7x^3 + 9x^2 - 5x + 1 = (x - 1)^3$$
 () ()

e)
$$2x^4 + 5x^3 - 11x^2 - 20x + 12 = (x^2 - 4)($$
)()

f)
$$x^5 - 8x^4 + 25x^3 - 38x^2 + 28x - 8 = (x^2 - 3x + 2)($$
)()

5. Solve the following using the Factor Theorem and Rational Root Theorem where necessary

a) If 2 is a root of the equation $3x^3 + x^2 - 20x + 12 = 0$, determine the other roots

b) What are all values of *k* for which one-half is a zero of:

$$P(x) = -4x^3 + 2x^2 - 2kx + k^3$$

c) If x = c is a root of the polynomial equation P(x) = 0, then what must be a factor of P(x).

d) If x - a is a factor of $2x^3 - ax^2 + (1 - a^2)x + 5$, what is a

e) Determine k so that x + 1 is a factor of: $2x^4 + (k + 1)x^2 - 6kx + 11$

f) A polynomial has factors: $x^2 - 4$, $x^2 - 2x$, and $x^2 + x - 2$. What is the lowest possibl degree of the polynomial?

g) For what number k is k a zero of: $f(x) = 2x^3 - kx^2 + (3 - k^2)x - 6$?

h) Find the complete factored form of the following:

$$P(x) = x^5 + 3x^4 - 5x^3 - 15x^2 + 4x + 12$$

If P(-2) = P(-1) = P(1) = 0

i) Factor completely:

$$P(x) = x^5 - 3x^4 + 8x^2 - 9x + 3$$

If x - 1 is a factor

j) Determine values for a and b such that x - 1 is a factor of both:

 $x^{3} + x^{2} + ax + b$ and $x^{3} - x^{2} - ax + b$

See Website for Detailed Answer Key

Extra Work Space