Section 3.4 - Remainder and Factor Theorems

The Remainder Theorem

- If we consider the divided form of a polynomial:

$$
f(x)=(x-a) q(x)+r, \quad \text { where } r \text { is a constant or } 0
$$

- If we evaluate $f(x)$ at $x=a$ then:

$$
\begin{gathered}
f(a)=(a-a) q(x)+r \\
f(a)=r
\end{gathered}
$$

- What this means is that the value of a polynomial at $\boldsymbol{x}=\boldsymbol{a}$ is the same as the remainder when we divide by $(\boldsymbol{x}-\boldsymbol{a})$. This has big connotations for a remainder of zero!

Remainder Theorem

If the polynomial $P(x)$ is divided by $x-a$, the remainder is $P(a)$.

Example 1: Without dividing, what is the remainder when $P(x)=2 x^{4}-3 x^{3}+2 x-3$ is divided by $x-2$?

Solution 1:

Example 2: For what value of k will the remainder be 5 when $P(x)=x^{3}-2 x^{2}+x+k$ is divided by $x-2$?

Solution 2:

Example 3: Find the remainder when $x^{17}-2 x^{12}+7$ is divided by $x+1$
Solution 3: By Synthetic Division, this would be a nightmare, so the Remainder Theorem is extremely helpful!

Divided by $x+1$ means that $x=-1$, so calculate $P(-1)$ to get the remainder

$$
\begin{gathered}
P(x)=x^{17}-2 x^{12}+7 \\
P(-1)=(-1)^{17}-2(-1)^{12}+7 \\
P(-1)=-1-2+7=4
\end{gathered}
$$

The Remainder is 4.

Next, we will see how having a Remainder of Zero helps us determine a Factor

The Factor Theorem

- This follows directly from the Remainder Theorem and was alluded to.
- If the Polynomial $P(x)$ is divded by $(\boldsymbol{x}-\boldsymbol{a})$ and the remainder is zero, then $(\boldsymbol{x}-\boldsymbol{a})$ divides the Polynomial and is a Factor of the Polynomial

Example 4: Given $P(x)=3 x^{4}+4 x^{3}-3 x^{2}-3 x-10$. Is $(x+2)$ a factor of $P(x)$?
Solution 4: Using the Remainder Theorem, it should follow that if $(x+2)$ is a factor, then should give us: $P(-2)=0$

$$
\begin{gathered}
P(-2)=3(-2)^{4}+4(-2)^{3}-3(-2)^{2}-3(-2)-10 \\
P(-2)=3(16)+4(-8)-3(4)-3(-2)-10 \\
P(-\mathbf{2})=\mathbf{4 8}-\mathbf{3 2}-\mathbf{1 2}+\mathbf{6}-\mathbf{1 0}=\mathbf{0}
\end{gathered}
$$

So that means that yes, $(\boldsymbol{x}+\mathbf{2})$ is a factor and we can use Synthetic Division to factor it out.

-2 | 3 | 4 | -3 | -3 | -10 |
| ---: | ---: | ---: | ---: | ---: |
| | | -6 | 4 | -2 |
| | -2 | 1 | -5 | 10 |

```
We end up with:
\[
(x+2)\left(3 x^{3}-2 x^{2}+x-5\right)
\]
```

In the next Section, we will see how we can estimate potential roots so we could continue this process
Example 5: Given $P(x)=3 x^{4}+4 x^{3}-3 x^{2}-3 x-10$. Is $(x-1)$ a factor of $P(x)$?
Solution 5: Using the Remainder Theorem, it should follow that if $(x-1)$ is a factor, then should give us: $P(1)=0$

$$
\begin{gathered}
P(1)=3(1)^{4}+4(1)^{3}-3(1)^{2}-3(1)-10 \\
\boldsymbol{P}(\mathbf{1})=\mathbf{3}+\mathbf{4}-\mathbf{3}-\mathbf{3}-\mathbf{1 0}=-\mathbf{9}
\end{gathered}
$$

So that means that no, ($\boldsymbol{x}-\mathbf{1}$) is not a factor and we can use Synthetic Division to check.

1 | 3 | 4 | -3 | -3 | -10 |
| ---: | ---: | ---: | ---: | ---: |
| | 3 | 7 | 4 | 1 |
| | 7 | 4 | 1 | -9 |

We end up with something we cannot factor, with the given parameters.

- From the above examples, we can state that:

Factor Theorem

If P is a continuous Polynomial Function. Then $P(x)$ has a factor of $(x-a)$ if, and only if, $P(a)=0$. The if and only if portion of the definition implies two separate but necessary parts of the Theorem.

1. If $P(a)=0$ then $(x-a)$ is a factor of $P(x)$
2. If $(x-a)$ is a factor of $P(x)$, then $P(a)=0$

Example 6: \quad Given $P(x)=x^{3}-2 x^{2}+3 x-6$. Is $(x-2)$ a factor of $P(x)$?
Solution 6: Using the Remainder Theorem, it should follow that $P(2)=0$ if $(x-2)$ is a factor

$$
\begin{gathered}
P(2)=(2)^{3}-2(2)^{2}+3(2)-6 \\
\boldsymbol{P}(\mathbf{2})=\mathbf{8}-\mathbf{8}+\mathbf{6}-\mathbf{6}=\mathbf{0}
\end{gathered}
$$

So that means that yes, $(\boldsymbol{x}-\mathbf{2})$ is a factor and we can use Synthetic Division to check.

Example 7: \quad Given $P(x)=2 x^{4}-3 x^{2}+x-1$. Is $(x+1)$ a factor of $P(x)$?
Solution 7: Using the Remainder Theorem, it should follow that $P(-1)=0$ if $(x+1)$ is a factor

$$
\begin{gathered}
P(-1)=2(-1)^{4}-3(-1)^{2}+(-1)-1 \\
\boldsymbol{P}(-\mathbf{1})=\mathbf{2}-\mathbf{3}-\mathbf{1}-\mathbf{1}=-\mathbf{3}
\end{gathered}
$$

So that means that no, $(\boldsymbol{x}+\mathbf{1})$ is not a factor and we can use Synthetic Division to check.

$$
\begin{array}{rrrrrr}
-1 & 2 & 0 & -3 & 1 & -1 \\
& & -2 & 2 & 1 & -2 \\
\hline 2 & -2 & -1 & 2 & -3
\end{array}
$$

We end up with something we cannot factor, with the given parameters.

The Rational Root Theorem

- This is the last part to our work
- It allows us to estimate potential roots, then we can use the Remainder and Factor Theorem to fully factor our higher degree polynomials

Consider a Polynomial $P(x)=3 x^{2}+2 x-8$ if we recall Binomial Multiplication, we would be looking for the first two terms to multiply to 3 and the last two terms multiply to -8

That means we have the following possibilities:

$\underline{\text { Possible Factors }} \underline{\underline{3 x^{2}+\cdots-8}}$	$\underline{\text { Corresponding Zeros }}$
$(3 x \pm 1)(x \pm 8)$	$\pm \frac{1}{3}$ and ± 8
$(3 x \pm 2)(x \pm 4)$	$\pm \frac{2}{3}$ and ± 4
$(3 x \pm 4)(x \pm 2)$	$\pm \frac{4}{3}$ and ± 2
$(3 x \pm 8)(x \pm 1)$	$\pm \frac{8}{3}$ and ± 1

- What this demonstrates is that the possible roots are related to the possible factors of the first and last terms.

$$
\begin{gathered}
\frac{\text { possible factors of last term }}{\text { possible factors of first term }}=\frac{ \pm 1, \pm 2, \pm 4, \pm 8}{ \pm 1, \pm 3} \\
\left\{ \pm 1, \pm 2, \pm 4, \pm 8, \pm \frac{1}{3}, \pm \frac{2}{3}, \pm \frac{4}{3}, \pm \frac{8}{3}\right\}
\end{gathered}
$$

Once you have this list, pick values and start trying them using the Remainder Theorem!

```
You will get good at picking strategically, it should be apparent that }\pm1\mathrm{ will not work, so try }x=-
P(-2)=3(-2)2}+2(-2)-
P(-2)=12-4-8=0 \longleftarrow\longleftarrow Once you have a Root, use Synthetic Division to start Factoring!
```

Example 8: \quad Find the zeros (roots) of $f(x)=x^{3}-9 x^{2}+20 x-12$
Solution 8: By the Rational Root Theorem, potential roots are:

$$
\frac{\text { factors of } 12}{\text { factors of } 1}=\frac{ \pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12}{ \pm 1}= \pm \mathbf{1}, \pm \mathbf{2}, \pm \mathbf{3}, \pm \mathbf{4}, \pm \mathbf{6}, \pm \mathbf{1 2}
$$

- Start with smaller numbers, 1,2 if available.

$$
f(1)=(1)^{3}-9(1)^{2}+20(1)-12=1-9+20-12=0
$$

We have a remainder of zero when $\boldsymbol{x}=\mathbf{1}$ so $(\boldsymbol{x}-\mathbf{1})$ is a root, use Synthetic Division to factor.
$\left.\begin{array}{r}1\end{array} \begin{array}{rrrr}1 & -9 & 20 & -12 \\ & & 1 & -8\end{array}\right) 12$.

We have: $\quad(x-1)\left(x^{2}-8 x+12\right)$

Which can be factored easily to:

$$
(x-1)(x-2)(x-6)
$$

Therefore, of the 12 possible roots, we get: $x=1,2,6$

Example 9: Find the zeros (roots) of $f(x)=4 x^{3}+12 x^{2}+5 x-6$
Solution 9: By the Rational Root Theorem, potential roots are:

$$
\frac{\text { factors of } 6}{\text { factors of } 4}=\frac{ \pm 1, \pm 2, \pm 3, \pm 6}{ \pm 1, \pm 2, \pm 4}= \pm \mathbf{1}, \pm \mathbf{2}, \pm \mathbf{3}, \pm \mathbf{6}, \pm \frac{\mathbf{1}}{\mathbf{2}}, \pm \frac{\mathbf{1}}{\mathbf{4}}, \pm \frac{\mathbf{3}}{\mathbf{2}}, \pm \frac{\mathbf{3}}{\mathbf{4}}
$$

- Start with smaller numbers, 1,2 if available. In this case $x=1$ and $x=-1$ do not work.

$$
f(-2)=4(-2)^{3}+12(-2)^{2}+5(-2)-6=-32+48-10-6=0
$$

We have a remainder of zero when $\boldsymbol{x}=-2$ so $(\boldsymbol{x}+2)$ is a root, use Synthetic Division to factor.

-2	4	12	5	-6
		-8	-8	6
	4	4	-3	0

It is always easier to try integer roots before attempting the fractions, they will factor out easier in the end!

We have: $\quad(x+2)\left(4 x^{2}+4 x-3\right)$

Which can be factored by grouping to get:

$$
(x+2)(2 x-1)(2 x+3)
$$

Therefore, of the 16 possible roots, we get: $x=-2, \frac{1}{2},-\frac{3}{2}$

Section 3.4 - Practice Problems

1. Find $P(k)$.

a) $P(x)=x^{4}+3 x^{3}-7 x+2 ; k=-2$	b) $P(x)=-2 x^{4}-3 x^{2}-2 ; k=\sqrt{2}$
c) $P(x)=-2 x^{2}+4 x+3 ; k=1+\sqrt{2}$	d) $P(x)=x^{5}-5 a^{4} x+4 a^{5} ; k=a$

2. Use the Remainder Theorem to solve for k and m.
a) When $x^{3}+k x+1$ is divided by $x-2$, the remainder is -3
b) When $x^{3}-x^{2}+k x-8$ is divided by $x-4$, the remainder is 0
c) When $2 x^{4}+k x^{2}-3 x+5$ is divided
by $x-2$, the remainder is 3
d) When $x^{3}+k x+6$ is divided by $x+2$, the remainder is 4
e) When $x^{3}+k x^{2}-2 x-7$ is divided by $x+1$, the remainder is 5 . What is the remainder when it is divided by $x-1$?
g) When $x^{4}+k x^{3}-m x+15$ has no remainder when divided by $x-1$ and $x+3$.
f) When $k x^{3}+m x^{2}+x-2$ is divided by $x-1$, the remainder is 6 . When the it is divided by $x+2$, the remainder is 12.
h) When $P(x)=3 x^{4}+k x^{2}+7$ is divided by $x-1$, the remainder is the same as when $f(x)=x^{4}+k x-4$ is divided by $x-2$
3. Use the Remainder Theorem to solve the following:
a) If a Polynomial equation $P(x)$ is divded by $x-a$, what is the value of its remainder?
b) Given $P(x)=x^{3}-r x^{2}+3 x+r^{2}$, find all possible values of r so that $P(3)=18$
c) When the polynomial $x^{n}+x-8$ is divided by $x-2$, the remainder is 10 . What is the value of n.
d) When $x^{2}+5 x-2$ is divided by $x+a$, the remainder is 8 . Find all possible values of a
e) When the polynomial
$P(x)=k x^{50}+2 x^{30}+4 x+7$ is divided by $x+1$, the remainder is 23 . What is the value of k.
f) Solve for k and m if
$P(x)=2 x^{3}+3 x^{2}+k x+m$ and $P(1)=8$ and $P(-2)=-13$.
4. Find the missing factors by using Synthetic Division
a) $2 x^{3}-7 x^{2}+2 x+3=(x-1)(\quad)(\quad)$
b) $x^{3}-3 x^{2}-10 x+24=(x-2)(\quad)(\quad)$
c) $x^{4}+x^{3}-9 x^{2}-9 x=x(x+1)(\quad)(\quad)$
d) $2 x^{4}-7 x^{3}+9 x^{2}-5 x+1=(x-1)^{3}(\quad)(\quad)$
e) $2 x^{4}+5 x^{3}-11 x^{2}-20 x+12=\left(x^{2}-4\right)(\quad)(\quad)$
f) $x^{5}-8 x^{4}+25 x^{3}-38 x^{2}+28 x-8=\left(x^{2}-3 x+2\right)(\quad)(\quad)$
5. Solve the following using the Factor Theorem and Rational Root Theorem where necessary
a) If 2 is a root of the equation $3 x^{3}+x^{2}-20 x+12=0$, determine the other roots
b) What are all values of k for which one-half is a zero of:

$$
P(x)=-4 x^{3}+2 x^{2}-2 k x+k^{3}
$$

c) If $x=c$ is a root of the polynomial equation $P(x)=0$, then what must be a factor of $P(x)$.
d) If $x-a$ is a factor of $2 x^{3}-a x^{2}+\left(1-a^{2}\right) x+5$, what is a
e) Determine k so that $x+1$ is a factor of: $2 x^{4}+(k+1) x^{2}-6 k x+11$
f) A polynomial has factors: $x^{2}-4, x^{2}-2 x$, and $x^{2}+x-2$. What is the lowest possibl degree of the polynomial?
g) For what number k is k a zero of: $f(x)=2 x^{3}-k x^{2}+\left(3-k^{2}\right) x-6$?
h) Find the complete factored form of the following:

$$
\begin{aligned}
& \qquad \begin{array}{l}
P(x)=x^{5}+3 x^{4}-5 x^{3}-15 x^{2}+4 x+12 \\
\text { If } P(-2)=P(-1)=P(1)=0
\end{array}
\end{aligned}
$$

i) Factor completely:

$$
P(x)=x^{5}-3 x^{4}+8 x^{2}-9 x+3
$$

If $x-1$ is a factor
j) Determine values for a and b such that $x-1$ is a factor of both:

$$
x^{3}+x^{2}+a x+b \quad \text { and } \quad x^{3}-x^{2}-a x+b
$$

Extra Work Space

