Section 3.3a – Eliminating Brackets, Fractions, and Decimals

This booklet belongs to:______Block: _____

Eliminating Brackets

• In math we have a term called **Distributivity**

Example: a(b+c) = ab + ac

- $a \cdot (b+c) = a \cdot b + a \cdot c$
- the a multiplies with both terms inside the brackets
- This is **DISTRIBUTIVITY**
- I use the term WATERBOMB

$$a(b+c) = ab + ac$$

Example:

- 2(r+6) = 22(r+6) = 2 Waterbomb
- 2r + 12 = 2

2r + 12 - 12 = 2 - 12 Subtract 12 from both sides

- 2r = -10
- $\frac{2r}{2} = \frac{-10}{2}$ Divide both sides by 2

r = -5

- > Whenever there are **Brackets**, you **Multiply in to them**
- > DISTRIBUTE, WATERBOMB, whichever term you prefer

Example 1:
$$4(s+4) = 28$$

 $4s + 16 = 28$ Multiply in the 4 to both terms in the brackets
 $4s + 16 - 16 = 28 - 16$ Subtract 16 from both sides of the equation
 $4s = 12$
 $\frac{4s}{4} = \frac{12}{4}$ Divide both sides by 4 to isolate the variable
 $s = 3$
• If is just a negative symbol -, this means -1
Example 2: $-(r-5) = 10$
 $-r + 5 = 10$ Multiply the -1 into the terms in the brackets
 $-r + 5 - 5 = 10 - 5$ Subtract 5 from both sides of the equation
 $-r = 5$ We don't want $-r$, we want r
 $(-1)(-r) = 5(-1)$ Multiply both sides by -1
 $r = -5$
Example 3: $3(x + 4) - 4(x + 6) = 2(x - 3)$

Solution 3: Remember the **sign in front of a number belongs to it**. So, for the second set of brackets, we are multiplying in a -4

$$3(x+4) - 4(x+6) = 2(x-3) \rightarrow 3(x+4) - 4(x+6) = 2(x-3)$$

3x + 12 - 4x - 24 = 2x - 6 • Watch your signs, this is where mistakes happen

-x - 12 = 2x - 6 • Subtract 2x from both sides, simplify x - 2x - 12 = 2x - 6 - 2x \rightarrow -x - 12 = -6

-x - 12 + 12 = -6 + 12 \rightarrow -x = 6 • Add 12 to both sides, simplify

-x(-1) = 6(-1) • Multiply both sides by -1

x = -6

Every step is logical and maintains the balance of the Equation

Eliminating Multiple Fractions

- How do you get rid of 1 denominator?
- $\frac{t}{2} = 4$ We multiply that fraction by the denominator or any MULTIPLE of it

You see we multiply by a multiple because it gives us a WHOLE NUMBER RESULT, ELIMINATING the FRACTION

Watch:

Multiple of 2

Multiple of 2

$$4 \cdot \frac{1}{2} = 2$$
 $8 \cdot \frac{1}{2} = 4$

Whole Number Result

Whole Number Result

• So, what if we have multiple denominators?

Example 4: Solve for the unknown.

$$\frac{1}{2}x + \frac{2}{3} = \frac{1}{4}$$

- To cancel out the 2, 3, and 4 respectively I would need to multiply everything by 2 and 3 and 4.
- But to get rid of all of them at once, I need to multiply them all by their Lowest Common Multiple!
- Using the LCM will give me a WHOLE NUMBER result for every fraction

Solution 4:

$$\frac{1}{2}x - \frac{2}{3} = \frac{1}{4}$$

- 1st what is the LCM of 2, 3, and 4? It's 12!
- Then **multiply every term** by it

12
$$\cdot \frac{1}{2}x - \frac{2}{3} \cdot \mathbf{12} = \frac{1}{4} \cdot \mathbf{12}$$
 • Multiply every fraction by the LCM

$\frac{12}{2}x - \frac{24}{3} = \frac{12}{4}$	• Remember the multiplication is with the numerator only
6x - 8 = 3	Simplify the fractions
6x - 8 + 8 = 3 + 8	• Add 8 to both sides of the equation
6x = 11	
$\frac{6x}{6} = \frac{11}{6}$	• Divide both sides by 6
$x = \frac{11}{6}$	

You MUST multiply every term to KEEP THAT BALANCE!!! •

Solve for the unknown

There are a couple other approaches you can take. Let's see this one first.

You can get a Common Denominator first, then when you multiply by the LCM they will all just cancel •

Example 5: Solution 5: $\frac{2}{3}x - \frac{1}{9} = \frac{7}{18}$ The LCM is 18, use equivalent fractions to get fractions with the same denominator with the same denominator $\frac{6}{6} \cdot \frac{2}{3}x - \frac{1}{9} \cdot \frac{2}{2} = \frac{7}{18} \rightarrow \frac{12}{18}x - \frac{2}{18} = \frac{7}{18} \qquad \text{Once you have this, multiplying everything by 18, just eliminates}$ the denominators. $1\% \cdot \frac{12}{1\%}x - 1\% \cdot \frac{2}{1\%} = 1\% \cdot \frac{7}{1\%} \to 12x - 2 = 7$ 12x - 2 + 2 = 7 + 2Add 2 to both sides 12x = 9 $\frac{12x}{12} = \frac{9}{12}$ Divide both sides by 12 $x = \frac{9}{12}$

- The last style of Elimination is similar to the first approach, but rather than multiply with the numerator, we can divide by the denominator first
- This gives us a solution we then multiply with the numerator. It keeps the numbers smaller!

Example 6: We will use the same equation as Example 4, hopefully you will see the subtle difference

$$\frac{1}{2}x - \frac{2}{3} = \frac{1}{4}$$

Solution 6:

$12 \cdot \frac{1}{2}x - \frac{2}{3} \cdot 12 = \frac{1}{4} \cdot 12$	• Divide by the denominator and then multiply the result by the numerator
$6 \cdot 1x - 2 \cdot 4 = 1 \cdot 3$	• You'll see this eliminates the fractions right away
6x - 8 = 3	• Notice we end up at the same point in Example 4
6x - 8 + 8 = 3 + 8	Add 8 to both sides
6x = 11	
$\frac{6x}{6} = \frac{11}{6}$	• Divide both sides by 6
$x = \frac{11}{6}$	

- All three of the above methods produce an accurate conclusion
- I suggest you pick one that you find the most straightforward and use it regularly
- Being fluid in your logic is the goal, so put your understanding in the process not the product

Eliminating Decimals

- It's really quite simple; we just need to know what decimals are?
- Decimals are **base 10 fractions**

$$0.1 = \frac{1}{10} \quad tenth$$
$$0.01 = \frac{1}{100} \quad hundredth$$
$$0.001 = \frac{1}{1000} \quad thousandth$$

So, the LCM of decimals is always going to be: 10, 100, 1000, etc.

Example 7:	Solve for the unknown ir	n the	e equation: $0.4x + 0.6 = 0.8$		
Solution 7:					
$0.4x \cdot 10 + 0.6$	\cdot 10 = 0.8 \cdot 10	•	Multiply every term by the LCM: 10		
4x + 6 = 8			Simplify the Equation		
4x + 6 - 6 = 8	8 – 6	•	Subtract both sides by 6		
4x = 2					
$\frac{4x}{4} = \frac{2}{4}$		•	Divide both sides by 4		
$x = \frac{2}{4} = \frac{1}{2}$		•	Simplify your final answer		
Example 8:	Solve for the unknown ir	n the	e equation: $0.3x - 0.06 = 0.24$		
Solution 8:	You need to multiply by	the	LCM, so the tenth won't do, need hundredth		
$0.3x \cdot 100 - 0.0$	$06 \cdot 100 = 0.24 \cdot 100$		• Multiply every term by the LCM: 100		
30x - 6 = 24			Simplify the Equation		
30x - 6 + 6 =	24 + 6		• Add 6 to both sides		
30x = 30					
$\frac{30x}{30} = \frac{30}{30}$			• Divide both sides by 30		
x = 1			Simplify your final answer		

Putting it all Together

- What happens when we have the full meal deal?
- I'm talking about fractions or decimals AND brackets all in one?
- Well we could WATERBOMB in the fractions, but then we end up with a whole bunch of fractions.... Not ideal.
- So, let's multiply by the LCD first and then WATERBOMB to remove the brackets
- See the examples below.

www.mrherlaar.weebly.com

Example 9: Solve the following: $\frac{2}{3}(x-5) - \frac{3}{4}(-x+3) + \frac{1}{6}(7+3)$	$x) = \frac{1}{2}(x-5)$				
Solution 9:					
$\frac{2}{3}(x-5) - \frac{3}{4}(-x+3) + \frac{1}{6}(7+x) = \frac{1}{2}(x-5)$ Identify the LCM of 12. Use this to multiply with each term to remove the fractions.					
$12 \cdot \frac{2}{3}(x-5) - 12 \cdot \frac{3}{4}(-x+3) + 12 \cdot \frac{1}{6}(7+x) = 12 \cdot \frac{1}{2}(x-5)$	Either multiply with the numerator and then divide, OR divide with the denominator first and then multiply with the numerator.				
8(x-5) - 9(-x+3) + 2(7+x) = 6(x-5) WATERBOMB to remove brackets (watch your signs)					
8x - 40 + 9x - 27 + 14 + 2x = 6x - 30 Group Like Terms (Sig	n in front belongs to the number!)				
$19x - 53 = 6x - 30$ Use addition principle to get all variables on or $-6x \qquad -6x$	ne side of the equation (Make 0)				
13x - 53 = -30 +53 +53 Use addition principle to isolate the variable and r	non-variable terms (Make 0)				
$\frac{13x}{13} = \frac{23}{13}$ Use the multiplication principle to divide and isolate the	e variable (Make 1)				
$x = \frac{23}{13}$ DONE					

Things to Remember / Understand

- Multiplying by the LCM gets rid of the Fractions
 - Multiply with the Numerator First and then Divide the Denominator Or
 - Divide with the Denominator and Multiply the Result with the Numerator (Keeps Things Smaller)
- WATERBOMBING gets rid of Brackets
- Addition Principal gets us to 0 on one side: Addition or Subtraction (Whichever Necessary)
- Multiplication Principal gets us to 1 on one side: Multiplication or Division (Whichever Necessary)
- Take it One Step at a Time
- It is about Equation Manipulation not the Answer

Section 3.3 – Practice Questions

- Eliminate the Brackets (WATERBOMB) Distributive Property
- Then solve for the unknown these are MULTI-STEP Equations

EMERGING LEVEL QUESTIONS

1.	2(x+4) = 8	2.	-3(s-7) = -5
	4(t+2) = 2(t-3)	4.	-5(6-z) = 3(z+4)
5.	-2(4t + 54) = 3(-t + 5)	6.	3(3q-4) = 2(4q+5)

7.
$$3(4r-3) = 5(-2r+6) + 2$$
 8. $8(3t-12) = 12t$

PROFICIENT LEVEL QUESTIONS

Eliminate the fractions, using LCM, then solve for the unknown.

9. $\frac{t}{6} + \frac{1}{3} = \frac{1}{2}$ 10. $\frac{7}{8}x - \frac{1}{16} + \frac{3}{4}x = \frac{1}{4} + x$

9

11.
$$\frac{2}{3}x - \frac{1}{4}x = \frac{1}{2}x + 1$$

12. $\frac{7}{2}q - 3q = -\frac{11}{2}q + \frac{3}{2} + \frac{5}{2}q$
13. $1 + \frac{y}{5} = \frac{2}{3}y + \frac{12}{5}$
14. $\frac{4}{5}x - \frac{1}{2}x = \frac{3}{10}x + 4$

Eliminate the decimals, using factors of 10, solve for the unknown.

15.	0.04k = 0.8	16. $0.2x + 0.22x = 0.84$
17.	2.1y - 2.8 = 5.6	18. 1.7w + 5 - 1.62w = 0.4w + 4.68
19.	0.3 + 0.4x = 0.2 - 0.25x	20. $0.05 - 0.5x = 0.1 - 0.25x$

21.
$$0.6x - 0.01 = 0.02x + 0.29$$

22.
$$1.05 - 0.62x = 0.85 - 0.22x$$

EXTENDING LEVEL QUESTIONS

The following questions are challenging MULTI-STEP questions. The Answer is provided below. SHOW THE STEPS that shows me you UNDERSTAND.

23.
$$\frac{1}{3}(5x-3) + \frac{1}{2}(1-x) = \frac{1}{4}(x-2)$$

Answer: x = 0

24.
$$\frac{2}{3}\left(\frac{7}{8} - \frac{x}{4}\right) - \frac{3}{8} = \frac{5}{8}$$

Answer: $x = -\frac{5}{2}$

25.

$$\frac{1}{4}(8x+4) - 17 = -\frac{1}{2}(4x-8)$$

Answer: x = 5

26.
$$0.25(8y+4) - 17 = -0.5(4y-8)$$

Answer: y = 5

27.
$$\frac{3}{4}(-x+1) + \frac{1}{2}(4-3x) = -\frac{2}{3}(x+5) + \frac{5}{6}(x-2)$$

Answer: $x = \frac{93}{29}$

Answer Key – Section 3.3

1. $x = 0$	2. $s = \frac{26}{3}$	3. $t = -7$	4. <i>z</i> = 21	5. $t = -\frac{123}{5}$	6. <i>q</i> = 22
7. $r = \frac{41}{22}$	8. $t = 8$	9. <i>t</i> = 1	10. $x = \frac{1}{2}$	11. <i>x</i> = -12	12. $q = \frac{3}{7}$
13. $y = -3$	14. No Solution	15. <i>k</i> = 20	16. $x = 2$	17. <i>y</i> = 4	18. <i>w</i> = 1
19. $x = -\frac{2}{13}$	20. $x = -\frac{1}{5}$	21. $x = \frac{15}{29}$	22. $x = \frac{1}{2}$	23. $x = 0$	24. $x = -\frac{5}{2}$
25. <i>x</i> = 5	26. <i>y</i> = 5	27. $x = \frac{93}{29}$			

Extra Work Space