Section 3.3a - Eliminating Brackets, Fractions, and Decimals

This booklet belongs to: \qquad Block: \qquad
Eliminating Brackets

- In math we have a term called Distributivity

Example: $\quad a(b+c)=a b+a c$

- $a \cdot(b+c)=\boldsymbol{a} \cdot \boldsymbol{b}+\boldsymbol{a} \cdot \boldsymbol{c}$
- the a multiplies with both terms inside the brackets
- This is DISTRIBUTIVITY
- I use the term WATERBOMB

$$
a(b+c)=a b+a c
$$

Example:

$$
\begin{aligned}
& 2(r+6)=2 \\
& 2(r+6)=2 \quad \text { Waterbomb } \\
& 2 r+12=2 \\
& 2 r+12-12=2-12 \quad \text { Subtract } 12 \text { from both sides } \\
& 2 r=-10 \\
& \frac{2 r}{2}=\frac{-10}{2} \quad \text { Divide both sides by } 2 \\
& \\
& \quad r=-5
\end{aligned}
$$

> Whenever there are Brackets, you Multiply in to them
> DISTRIBUTE, WATERBOMB, whichever term you prefer

Example 1:

$$
\begin{aligned}
& 4(s+4)=28 \\
& 4 s+16=28 \\
& 4 s+16-16=28-16 \\
& 4 s=12 \\
& \frac{4 s}{4}=\frac{12}{4} \\
& s=3
\end{aligned}
$$

- Multiply in the 4 to both terms in the brackets
- Subtract 16 from both sides of the equation
- Divide both sides by 4 to isolate the variable
- If is just a negative symbol - , this means -1

Example 2:

$$
\begin{aligned}
& -(r-5)=10 \\
& -r+5=10 \\
& -r+5-5=10-5 \\
& -r=5 \\
& (-1)(-r)=5(-1) \\
& r=-5
\end{aligned}
$$

- We don't want $-r$, we want r
- Multiply both sides by -1

Example 3: $\quad 3(x+4)-4(x+6)=2(x-3)$
Solution 3: \quad Remember the sign in front of a number belongs to it. So, for the second set of brackets, we are multiplying in a -4

$$
3(x+4)-4(x+6)=2(x-3) \quad \rightarrow \quad \overparen{3(x+4)}-4(x+6)=2(\widehat{x-3})
$$

$$
3 x+12-4 x-24=2 x-6
$$

- Watch your signs, this is where mistakes happen

- Subtract $2 x$ from both sides, simplify
$-x-12+12=-6+12 \rightarrow-x=6 \quad \bullet$ Add 12 to both sides, simplify
$-x(-1)=6(-1)$
- Multiply both sides by -1

Eliminating Multiple Fractions

- How do you get rid of 1 denominator?
$\frac{t}{2}=4 \quad$ - We multiply that fraction by the denominator or any MULTIPLE of it

You see we multiply by a multiple because it gives us a WHOLE NUMBER RESULT, ELIMINATING the FRACTION

Watch:

Multiple of 2
Multiple of 2
$4 \cdot \frac{1}{2}=2$
$8 \cdot \frac{1}{2}=4$

Whole Number Result
Whole Number Result

- So, what if we have multiple denominators?

Example 4: \quad Solve for the unknown.

$$
\frac{1}{2} x+\frac{2}{3}=\frac{1}{4}
$$

- To cancel out the 2,3 , and 4 respectively I would need to multiply everything by 2 and 3 and 4 .
- But to get rid of all of them at once, I need to multiply them all by their Lowest Common Multiple!
- Using the LCM will give me a WHOLE NUMBER result for every fraction

Solution 4:

$$
\frac{1}{2} x-\frac{2}{3}=\frac{1}{4}
$$

- $\quad 1^{\text {st }}$ what is the LCM of 2,3 , and 4 ?

It's 12

- Then multiply every term by it
$12 \cdot \frac{1}{2} x-\frac{2}{3} \cdot 12=\frac{1}{4} \cdot 12 \quad$ - Multiply every fraction by the LCM
- You MUST multiply every term to KEEP THAT BALANCE!!!

There are a couple other approaches you can take. Let's see this one first.

- You can get a Common Denominator first, then when you multiply by the LCM they will all just cancel

Example 5: \quad Solve for the unknown
Solution 5:

$$
\begin{aligned}
& \frac{2}{3} x-\frac{1}{9}=\frac{7}{18} \\
& \frac{6}{6} \cdot \frac{2}{3} x-\frac{1}{9} \cdot \frac{2}{2}=\frac{7}{18} \quad \rightarrow \quad \frac{12}{18} x-\frac{2}{18}=\frac{7}{18} \\
& 18 \cdot \frac{12}{18} x-18 \cdot \frac{2}{18}=18 \cdot \frac{7}{18} \quad \rightarrow \quad 12 x-2=7
\end{aligned}
$$

The LCM is 18 , use equivalent fractions to get fractions
with the same denominator

Once you have this, multiplying everything by 18 , just eliminates the denominators.

$$
\begin{array}{l|l}
12 x-2+2=7+2 & \text { Add } 2 \text { to both sides }
\end{array}
$$

$12 x=9$

$$
\frac{12 x}{12}=\frac{9}{12} \quad \text { Divide both sides by } 12
$$

$$
x=\frac{9}{12}
$$

$$
\begin{aligned}
& \frac{12}{2} x-\frac{24}{3}=\frac{12}{4} \\
& 6 x-8=3 \\
& 6 x-8+8=3+8 \\
& 6 x=11 \\
& \frac{6 x}{6}=\frac{11}{6} \\
& x=\frac{11}{6} \\
& \text { - Remember the multiplication is with the numerator only } \\
& \text { - Simplify the fractions } \\
& \text { - Add } 8 \text { to both sides of the equation } \\
& \text { - Divide both sides by } 6
\end{aligned}
$$

- The last style of Elimination is similar to the first approach, but rather than multiply with the numerator, we can divide by the denominator first
- This gives us a solution we then multiply with the numerator. It keeps the numbers smaller!

Example 6: We will use the same equation as Example 4, hopefully you will see the subtle difference

$$
\frac{1}{2} x-\frac{2}{3}=\frac{1}{4}
$$

Solution 6:

$$
\begin{aligned}
& 12 \cdot \frac{1}{2} x-\frac{2}{3} \cdot 12=\frac{1}{4} \cdot 12 \\
& 6 \cdot 1 x-2 \cdot 4=1 \cdot 3 \\
& 6 x-8=3 \\
& 6 x-8+8=3+8 \\
& 6 x=11 \\
& \frac{6 x}{6}=\frac{11}{6} \\
& x=\frac{11}{6}
\end{aligned}
$$

- Divide by the denominator and then multiply the result by the numerator
- You'll see this eliminates the fractions right away
- Notice we end up at the same point in Example 4
- Add 8 to both sides
- Divide both sides by 6
- All three of the above methods produce an accurate conclusion
- I suggest you pick one that you find the most straightforward and use it regularly
- Being fluid in your logic is the goal, so put your understanding in the process not the product

Eliminating Decimals

- It's really quite simple; we just need to know what decimals are?
- Decimals are base $\mathbf{1 0}$ fractions

$$
\begin{aligned}
0.1=\frac{1}{10} & \text { tenth } \\
0.01=\frac{1}{100} & \text { hundredth } \\
0.001=\frac{1}{1000} & \text { thousandth }
\end{aligned}
$$

So, the LCM of decimals is always going to be: $10,100,1000$, etc.

Example 7: \quad Solve for the unknown in the equation: $\quad 0.4 x+0.6=0.8$

Solution 7:

$0.4 x \cdot \mathbf{1 0}+0.6 \cdot \mathbf{1 0}=0.8 \cdot \mathbf{1 0}$

- Multiply every term by the LCM: 10
$4 x+6=8$
- Simplify the Equation
$4 x+6-6=8-6$
- Subtract both sides by 6
$4 x=2$
$\frac{4 x}{4}=\frac{2}{4}$
- Divide both sides by 4
$x=\frac{2}{4}=\frac{1}{2}$
- Simplify your final answer

Example 8: \quad Solve for the unknown in the equation: $\quad 0.3 x-0.06=0.24$

Solution 8: \quad You need to multiply by the LCM, so the tenth won't do, need hundredth
$0.3 x \cdot 100-0.06 \cdot 100=0.24 \cdot 100$
$30 x-6=24$
$30 x-6+6=24+6$
$30 x=30$
$\frac{30 x}{30}=\frac{30}{30}$
$x=1$

- Multiply every term by the LCM: 100
- Simplify the Equation
- Add 6 to both sides
- Divide both sides by 30
- Simplify your final answer

Putting it all Together

- What happens when we have the full meal deal?
- I'm talking about fractions or decimals AND brackets all in one?
- Well we could WATERBOMB in the fractions, but then we end up with a whole bunch of fractions.... Not ideal.
- So, let's multiply by the LCD first and then WATERBOMB to remove the brackets
- See the examples below.

Example 9: \quad Solve the following: $\quad \frac{2}{3}(x-5)-\frac{3}{4}(-x+3)+\frac{1}{6}(7+x)=\frac{1}{2}(x-5)$

Solution 9:

$\frac{2}{3}(x-5)-\frac{3}{4}(-x+3)+\frac{1}{6}(7+x)=\frac{1}{2}(x-5)$
Identify the LCM of 12 . Use this to multiply with each term to remove the fractions.
$8 x-40+9 x-27+14+2 x=6 x-30$
$19 x-53=6 x-30 \quad$ Use addition principle to get all variables on one side of the equation (Make 0)
$-6 x-6 x$

$\frac{13 x}{13}=\frac{23}{13} \quad$ Use the multiplication principle to divide and isolate the variable- \quad (Make 1)
$x=\frac{23}{13}: \begin{array}{lll}\text { DONE } \\ & \end{array}$

Things to Remember / Understand

- Multiplying by the LCM gets rid of the Fractions
- Multiply with the Numerator First and then Divide the Denominator

Or

- Divide with the Denominator and Multiply the Result with the Numerator (Keeps Things Smaller)
- WATERBOMBING gets rid of Brackets
- Addition Principal gets us to $\mathbf{0}$ on one side: Addition or Subtraction (Whichever Necessary)
- Multiplication Principal gets us to 1 on one side: Multiplication or Division (Whichever Necessary)
- Take it One Step at a Time
- It is about Equation Manipulation not the Answer

Section 3.3 - Practice Questions

- Eliminate the Brackets (WATERBOMB) - Distributive Property
- Then solve for the unknown - these are MULTI-STEP Equations

EMERGING LEVEL QUESTIONS

1. $\quad 2(x+4)=8$
2. $\quad-3(s-7)=-5$
3. $\quad-5(6-z)=3(z+4)$
4. $4(t+2)=2(t-3)$
5. $3(3 q-4)=2(4 q+5)$
6. $3(4 r-3)=5(-2 r+6)+2$
7. $\quad 8(3 t-12)=12 t$

PROFICIENT LEVEL QUESTIONS

Eliminate the fractions, using LCM, then solve for the unknown.
9. $\quad \frac{t}{6}+\frac{1}{3}=\frac{1}{2}$
10. $\frac{7}{8} x-\frac{1}{16}+\frac{3}{4} x=\frac{1}{4}+x$
11. $\frac{2}{3} x-\frac{1}{4} x=\frac{1}{2} x+1$
13. $\quad 1+\frac{y}{5}=\frac{2}{3} y+\frac{12}{5}$
12. $\frac{7}{2} q-3 q=-\frac{11}{2} q+\frac{3}{2}+\frac{5}{2} q$
14. $\quad \frac{4}{5} x-\frac{1}{2} x=\frac{3}{10} x+4$

Eliminate the decimals, using factors of 10, solve for the unknown.
15. $0.04 k=0.8$ (16. $0.2 x+0.22 x=0.84$
21. $0.6 x-0.01=0.02 x+0.29$
22. $1.05-0.62 x=0.85-0.22 x$

EXTENDING LEVEL QUESTIONS

The following questions are challenging MULTI-STEP questions. The Answer is provided below. SHOW THE STEPS that shows me you UNDERSTAND.
23.

$$
\frac{1}{3}(5 x-3)+\frac{1}{2}(1-x)=\frac{1}{4}(x-2)
$$

24.

$$
\frac{2}{3}\left(\frac{7}{8}-\frac{x}{4}\right)-\frac{3}{8}=\frac{5}{8}
$$

$$
\text { Answer: } \quad x=-\frac{5}{2}
$$

25.

$$
\frac{1}{4}(8 x+4)-17=-\frac{1}{2}(4 x-8)
$$

26.

$0.25(8 y+4)-17=-0.5(4 y-8)$
27.

$$
\frac{3}{4}(-x+1)+\frac{1}{2}(4-3 x)=-\frac{2}{3}(x+5)+\frac{5}{6}(x-2)
$$

Answer: $x=\frac{93}{29}$

Answer Key - Section 3.3

1. $x=0$	2. $\quad s=\frac{26}{3}$	3. $t=-7$	4. $z=21$	5. $t=-\frac{123}{5}$	6. $q=22$
7. $r=\frac{41}{22}$	8. $t=8$	9. $t=1$	10. $x=\frac{1}{2}$	11. $x=-12$	12. $q=\frac{3}{7}$
13. $y=-3$	14. No Solution	15. $k=20$	16. $x=2$	17. $y=4$	18. $w=1$
19. $x=-\frac{2}{13}$	20. $x=-\frac{1}{5}$	21. $x=\frac{15}{29}$	22. $x=\frac{1}{2}$	23. $x=0$	24. $x=-\frac{5}{2}$
25. $x=5$	26. $y=5$	27. $x=\frac{93}{29}$			

Extra Work Space

