Section 3.3 - Practice Problems

1. You are starting a business and need various sizes of rectangular boxes (including lids). If the original box size is: length $=5$ in, width $=4 i n$, height $=3$ in
a) What is the surface area of the original box?

$$
\begin{aligned}
S A & =2 l w+2 l h+2 w h \\
& =2(5)(4)+2(5)(3)+2(4)(3) \\
& =40+30+24 \\
& 94 m^{2}
\end{aligned}
$$

b) What happens to the surface area if we double the length and the width?

$$
\begin{aligned}
& l=10 \\
& \omega=8
\end{aligned}
$$

$$
2(8)(10)+2(10)(3)+2(8)(3)
$$

$$
160+60+48
$$

$$
208 \mathrm{~m}^{2}
$$

It increases by: $174 n^{2}$
c) How does the surface area change if the height and length are tripled?

$$
\begin{array}{ll}
h=9 & 2(15)(4)+2(15)(9)+2(4)(9) \\
l=15 & 120+270+72 \\
462 \mathrm{~m}^{2} & \begin{array}{c}
\text { Increases by: } \\
368 \mathrm{~m}^{2}
\end{array}
\end{array}
$$

d) If each side was multiplied by a factor of 4, what is the new surface area?

$$
\begin{array}{lc}
l=20 & 2(20)(16)+2(16)(12)+2(20)(12) \\
\omega=16 & 640+\frac{384}{}+480 \\
h=12 & 1504 \mathrm{~m}^{2}
\end{array}
$$

surface area increaus by fads ari.weedy.com 16
2. Using the dimensions from the previous question, what happens to the surface area of the box if all sides are halved (divided by 2)?

$$
\begin{array}{lc}
l=2.5 & 2(2.5)(2)+2(2.5)(1.5)+2(2)(1.5) \\
\omega=2 \\
h=1.5 & 10 \\
& +7.5+6 \\
\hline
\end{array}
$$ surface area. He is considering changing the depth from 5.0 m to 7.0 m .

a) What is the surface area of the original?

$$
S A=5 \cdot 3+(5 \cdot 3) 2+\frac{(3 \cdot 2.6)(2)}{2}
$$

b) What is the surface area of the larger plan?

$$
\begin{aligned}
& 7.3+(7.3) 2+\frac{(3.2 .6) 2}{2} \\
= & 21+42+7.8 \\
= & 70.8 \mathrm{~m}^{2}
\end{aligned}
$$

c) What is the difference in the Surface Areas?

$$
70.8-52.8=18 \mathrm{~m}^{2}
$$

d) How much would it cost to increase the depth?

Since there are $18 \mathrm{~m}^{2}$ difference the larger version would be:

$$
18 k^{3} 35 m^{2}={ }^{1730}
$$

4. If you were to double or halve the length (10 cm) of the following image, how would by how much would the Surface Area change with respect to the original?

$$
\text { Original: } \quad 10.3+\frac{(3.4) 2}{2}+5.10+10.4
$$

$$
\begin{aligned}
& =30+12+50+40 \\
& =132 \mathrm{~cm}^{2}
\end{aligned}
$$

Double: $\quad 20 \cdot 3+12+5 \cdot 20+20 \cdot 4$

$$
\begin{aligned}
& =60+12+100+80 \\
& =252 \mathrm{~cm}^{2}
\end{aligned}
$$

$$
\text { Increases by: } 120 \mathrm{~cm}^{2}
$$

$$
\text { Half: } 5.3+\frac{(3.4) 2}{2}+5.5+5.4
$$

$$
=15+12+25+20
$$

$$
=72 \mathrm{~cm}^{2}
$$

