Section 3.3 – Practice Problems

1. Find the rate of change of the volume of a cube with respect to its edge length x when x = 4.

$$V(\omega) = 3x^{2}$$
 $V'(4) = 3(4)^{2}$ = $48 \text{ unit}^{3}/\text{unit}$

2. Find the rate of change of the area of a circle with respect to its radius r when r = 5cm.

$$A'(s) = 2\pi r$$
 at $5 = r$ $A'(s) = 2\pi (5)$

$$= 10\pi \text{ cm}/\text{cm}$$

3. If a tank holds 1000L of water, which takes an hour to drain from the bottom of the tank, then the volume V of water remaining in the tank after t minutes is given by:

$$V = 1000 \left(1 - \frac{t}{60} \right)^2 \qquad 0 \le t \le 60$$

Find the rate at which the water is flowing out of the tank (instantaneous rate of change) after 10 minutes.

$$V' = 1000 \left[2(1 - \frac{t}{60}) \cdot \frac{-1}{60} \right]$$

$$1000 \left[-\frac{2}{60} + \frac{t}{1900} \right]$$

$$-\frac{100}{3} + \frac{5t}{9}$$

$$\frac{5t - 300}{9}$$

$$at \ t = 10$$

$$-\frac{250}{9} \text{ min}$$

4. The mass of the part of a wire that lies between its left end and a point x metres to the right is \sqrt{x} kilograms.

a) Find an approximate value for the average density of the part of the wire from x = 1m to x = 1.1m

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = \frac{1.11 - 11}{1.11 - 11} = \frac{6.0488}{6.1} = 0.488 \text{ kg/m}$$

b) Find the linear density when x = 1m

5. The mass of the left x centimeters of a string is $x + \frac{1}{2}x^2$ grams. Find the linear density when x = 6cm.

$$f(x) = 1 + x$$

$$f'(6) = 7$$

$$7g/on$$

6. The population of a bacteria colony after t hours is given by $n = 1000 + 180t + 25t^2 + 3t^3$. Find the growth rate after 3h.

$$n'(t) = 180 + 50t + 9t^{2}$$

 $n'(3) = 180 + 50(3) + 9(3)^{2}$
 $= 411 \text{ bac}$

7. The volume V of a substance kept at constant temperature will depend on the pressure P. The isothermal compressibility β is defined by

$$\beta = -\frac{1}{V} \frac{dV}{dP}$$

And measures how fast, per unit volume, the volume of a substance decreases as the pressure increases at constant temperature.

The volume V (in cubit meters) of a sample of air at 25°C was related to pressure P (in kilopascals) by the equation. Find compressibility when pressure is 40 kPa

$$V = \frac{5.3}{P}$$

$$\frac{dV}{dp} = -\frac{5.3}{P^2} \text{ M}$$

$$\beta = -\frac{1}{\frac{5.3}{P^2}} \cdot \left(-\frac{5.3}{P^2}\right) = -\frac{P}{5.3} \cdot \left(-\frac{5.3}{P^2}\right)$$

8. The concentration of dinitrogen pentoxide, N_2O_5 , in the reaction $2N_2O_5 \rightarrow 4NO_2 + O_2$ were measured at one-minute intervals, as can be seen in the table below.

Time (min)	0	1	2	3	4
$[N_2O_5]$	0.160	0.113	0.080	0.056	0.040

Draw the graph of N_2O_5 as a function of time and use it to estimate the rate of reaction after two minutes.

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

$$0.03 - 0.13$$

$$\frac{4 - 0}{4} = -0.025 \text{ mol}/L$$
min

