Section 3.2-2D Nets and Surface Area of 3D shapes

Surface Area

- So what about Surface Area?
- How does Surface Area differ from Area?

Well it is still 2-Dimensional shapes but it is the combination of all the 2-Dimensional sides of a 3-Dimensional figure.

- The Space you can wrap with paper, material, etc.
- The Space you can paint, colour in, etc.
- Requires 2 axes of direction, 2-D

So what Shapes do we have know?

- Cubes

- Rectangular Prisms
- Right Triangular Prisms
\checkmark See the attached page for all the General Formulas
\checkmark We will discuss a few in detail
- Pyramids
- Cones
- Spheres
$>$ Remember that we just need to take the AREA of each 2-D side and ADD them up!

What is a Net Drawing?

It can be helpful to visualize the 3-D shape as an unfolded 3-Dimensional Shape
The unfolding of the shape into a flat 2-D surface is called A Net Representation

General Formulas

Cube:

1

Rectangular Prism:

$$
2 l w+2 l h+2 w h
$$

w

$$
2 \pi r^{2}+2 \pi r h
$$

where \boldsymbol{r} is the radius of the circle and \boldsymbol{h} is the height of the cylinder
h

Right Triangular Prism:

$$
\frac{2(\boldsymbol{b} * \boldsymbol{h})}{2}+(w * h)+(b * w)+(w * s)
$$

Example: Solve the following using their Equations

Example:

$$
\begin{gathered}
S A=2 l w+2 l h+2 w h \\
S A=2(10)(3)+2(10)(6)+2(3)(6) \\
S A=60+120+36=216 \mathrm{~cm}^{2}
\end{gathered}
$$

- When dealing with Right Prisms we can summon our good old Pythagorean Theorem to solve for unknown lengths on our Right Triangle $\quad a, b$, and c
- Except that the Pythagorean Theorem in this case is:

$$
\begin{gathered}
b^{2}+h^{2}=s^{2} \\
\text { base }^{2}+\text { height }^{2}=(\text { slant height })^{2}
\end{gathered}
$$

Surface Area and Volume General Formula Sheet

Geometric Solid	Surface Area	Volume
Cylinder	$\begin{aligned} & A_{\text {top }}=\pi r^{2} \\ & A_{\text {base }}=\pi r^{2} \\ & A_{\text {side }}=2 \pi r h \\ & S A=2 \pi r^{2}+2 \pi r h \end{aligned}$	$V=($ area of base $) \times h$
Sphere	$S A=4 \pi r^{2}$ or $S A=\pi d^{2}$	$V=\frac{4}{3} \pi r^{3}$
Cone	$\begin{aligned} & A_{\text {side }}=\pi r s \\ & A_{\text {base }}=\pi r^{2} \\ & S A=\pi r^{2}+\pi r s \end{aligned}$	$V=\frac{1}{3} \times(\text { area of base }) \times h$
Square-Based Pyramid	$\begin{aligned} & \left.A_{\text {triangle }}=\frac{1}{2} b s \text { (for each triangle }\right) \\ & A_{\text {base }}=b^{2} \\ & S A=2 b s+b^{2} \end{aligned}$	$V=\frac{1}{3} \times(\text { area of base }) \times h$
Rectangular Prism	$S A=w h+w h+l w+l w+l h+l h$ or $S A=2(w h+l w+l h)$	$V=($ area of base $) \times h$
General Right Prism	$S A=$ the sum of the areas of all the faces	$V=($ area of base $) \times h$
General Right Pyramid	$S A=$ the sum of the areas of all the faces	$V=\frac{1}{3} \times(\text { area of base }) \times h$

Section 3.2 - Practice Problems

Find the Exact Surface Area of the following shapes, draw nets for all but the cones and spheres. Round to 1 decimal place if necessary.
1)

2)

3)

Surface Area $=$ \qquad

Surface Area $=$ \qquad Surface Area $=$ \qquad

4)

5)

6)

Surface Area $=$ \qquad

Surface Area $=$ \qquad Surface Area = \qquad

7)

Surface Area = \qquad
8)

Surface Area = \qquad
9)

Find the Exact Surface Area of the following shapes. Round to 1 decimal place if necessary.
10)

11)

Surface Area $=$ \qquad Surface Area = \qquad
\qquad
|
12)

Surface Area = \qquad

Workplace 11
13)

14)

15)

Surface Area $=$ \qquad
\qquad
Surface Area =
Surface Area = \qquad
16)

Surface Area =
 \qquad

17)

18)

Surface Area = \qquad

Section 3.2 - Answer Key

1. $82 i n^{2}$
2. $210 f t^{2}$
3. $282.7 y d^{2}$
4. $472 f t^{2}$
5. $461.8 y d^{2}$
6. $377.0 \mathrm{~m}^{2}$
7. $294.0 y d^{2}$
8. $791.7 \mathrm{in}^{2}$
9. $2827.4 f t^{2}$
10. $4486.2 y d^{2}$
11. $2770 \mathrm{in}^{2}$
12. $2940.5 \mathrm{ft}^{2}$
13. $3769.9 \mathrm{ft}^{2}$
14. 9960 in 2
15. $5192 y d^{2}$
16. $3696 y d^{2}$
17. $3499.5 f^{2}$
18. $2532 i^{2}$
