Section 3.2 – Graphing Polynomials

- In order to start making a rough sketch of a Polynomial, it is a great place to start by considering the roots (zeros, solutions, x intercepts), and the multiplicity at each root.
 - a) If (x a) has multiplicity of 1, the graph crosses the x axis at that root

b) If (x - a) has even multiplicity, the graph touches the x - axis at that root and bounces back

c) If (x - a) has odd multiplicity, the graph **crosses** the x - axis and **looks like it lies on the root first**

Steps to Graph a Polynomial

- 1) Find the x ints by solving the equation when f(x) = 0 (by factoring)
- 2) Find the y int by solving the equation f(0) (when x = 0)
- 3) Determine the general shape at the x ints
- 4) Use the leading coefficient and degree to determine end-behaviour
- 5) Determine the number of turning points
- 6) Use the x value between x ints to estimate the peaks and valleys of the graph
- 7) Plot a decent number of points and roughly sketch a smooth curve

Example 1: Graph $y = x^2(3-x)(x^2+1)$

Solution 1:

- Multiplied out $x^2(3-x)(x^2+1)$ gives us a **fifth power polynomial**, and the $(3-x) \rightarrow -1(x-3)$
- This give us a degree 5 polynomial with a -1 as a leading coefficient.
- So, our graph starts up left and ends down right
- If x = 0 our y int is 0 (0, 0)
- Our x ints are given when y = 0 so, (0, 0) and (3, 0)
- $x^2 + 1 = 0$ has no solution, therefore no x int
- Since x = 0 has multiplicity of 2 the graph bounces back at that root, but goes through when x = 3
- Plot additional points, **pick points on either side of the roots** to get the basic shape of the graph

x	у
-2	100
-1	8
1	4
2	20
2.5	23
4	-272

Example 2: Graph $y = (x - 2)(1 - x)(x + 1)^2$

Solution 2:

- Multiplied out $(x 2)(1 x)(x + 1)^2$ gives us a **fourth power polynomial**, and the $(1 x) \rightarrow -1(x 1)$
- This give us a degree 4 polynomial with a -1 as a leading coefficient.
- So, our graph starts and ends down
- If x = 0 our y int is -2 (0, -2)
- *x ints* are when *y* = 0 so, (2, 0), (1, 0), *and* (-1, 0)
- Since (x + 1) has multiplicity of 2 the graph bounces back at that root, but goes through when x = 1 and x = 2
- Plot a point at x = 1.5 to get our only discrepancy

Example 3: Graph $y = (x - 3)(x + 2)^2(x - 1)^3$

Solution 3:

- Multiplied out $(x 3)(x + 2)^2(x 1)^3$ gives us a sixth power polynomial
- This give us a **degree 6 polynomial** with a **positive leading coefficient**.
- So, our graph starts and ends up
- If x = 0 our y int is 12 (0, 12)
- Our x ints are given when y = 0 so, (-2, 0), (1, 0), and (3, 0)
- Since x = -2 has multiplicity of 2 the graph bounces back at that root, but goes through when x = 3, and goes through but lays on x = 1
- Plot additional points, pick points on either side of the roots to get the basic shape of the graph

x	У
-3	2058
-1	32
2	-16
2.5	-34.172

Equation of Polynomial Functions

- Much like how we solved for the equation of a parabola in grade 11, we can use roots, intercepts, and given points to write the factored form of the polynomial and then solve for the a-value of
- **Example 4:** A polynomial has -1, -1, 0, 2 as its roots, and p(1) = 5. What is the equation of the polynomial?

Solution 4:

$$p(x) = a(x + 1)^{2}(x)(x - 2)$$
, but with $p(1) = 5$

$$p(1) = a(1+1)^{2}(1)(1-2) = 5 \qquad \rightarrow \qquad 5 = a(4)(1)(-1)$$

$$5 = -4a \quad \rightarrow \qquad a = -\frac{5}{4} \qquad \rightarrow \qquad p(x) = -\frac{5}{4}(x+1)^{2}(x)(x-2)$$

Example 5: Write the equation of the polynomial in lowest degree that is represented by the graph

Solution 5:

We have solutions (zeros, roots, etc.) at:

Zeros	Multiplicity
-4	1
-2	2
1	1

 $p(x) = a(x + 2)^{2}(x + 4)(x - 1)$, and pick any point on the graph p(0) = -3

$p(0) = a(0+2)^2(0+4)(0-1) = -3$	\rightarrow	-3 = a(4)(4)(-1)
$-3 = -16a \rightarrow a = \frac{-3}{-16} = \frac{3}{16}$	\rightarrow	$p(x) = \frac{3}{16}(x+2)^2(x+4)(x-1)$

Example 6: Sketch the graph of $f(x) = (x - a)(x - b)^2(x - c)$ where a < b < 0 < c

• Identify the y – *intercept*, where f(x) > 0, and where f(x) < 0

Solution 6:

- Fourth power Polynomial with positive leading coefficient
- Starts up and ends up
- **Goes through** *root a* (most left)
- Then **bounces back** at *b* (right of a but left of 0)
- Goes through *c*
- y int is when x = 0, so $(0 - a)(0 - b)^2(0 - c) = ab^2c$

$$(0, ab^2c)$$

- f(x) > 0 when x < a and x > c
- f(x) < 0 when $a \le x \le c$

DESMOS IS A FANTASTIC GRAPHING APP AND WEBSITE TO SEE BEHAVIOURS OF GRAPHS

WE WILL LOOK AT THE BASICS AS A CLASS

Section 3.2 – Practice Problems

1. What is the minimum degree and number of turning points of the following:

2. Using the table below, what is the minimum number of zeros possible for the polynomial function. Discuss at which integer or between which two integers, does the zero (root) occur.

a)		-	4	2	2	1	0	1	2	2	4
,	x	-5	-4	-3	-Z	-1	0	1	Z	3	4
	P(x)	-25	-8	3	0	-6	-24	-33	-32	-15	5

b)	x	-3	-2	-1	0	1	2	3
	P(x)	-75	-1	3	-6	-15	0	63

6

3. Determine the equation, in factored form, of a polynomial that fits the following graphs.

4. Find all values of x where the outputs, f(x) are ≥ 0 .

a)
$$f(x) = -\frac{1}{3}x^{3}$$

b) $f(x) = \frac{1}{2}x^{3} + 4$
c) $f(x) = -\frac{1}{16}x^{4} + 1$
d) $f(x) = x^{5} - 1$

e)
$$f(x) = x^4 - 4x^2$$

f) $f(x) = 9x - x^3$
g) $f(x) = -x^3 - 3x^2 + 10x$
h) $f(x) = x^4 - 3x^3 - 4x^2$

i)
$$f(x) = x(x+1)^2(x-2)(x-4)$$

j)
$$f(x) = x^2(x+1)^2(x-1)$$

5. Sketch the polynomial of lowest degree given the following details (Roughly estimate the peaks and valleys).

Pre-Calculus 12

6. Sketch a graph given the following information.

a)
$$f(x) = (x - a)(x - b)^2(x - c),$$

where $a < b < 0 < c$

b) $f(x) = (x-a)^3(x-b)(x-c)$

where a < 0 < b < c

a) with zeros at -1, -1, 2 and a y - int of (0, -4) b) with zeros at 0, 0, 1, 1, 1, 2 and P(-1) = 12

c) with zeros at $\frac{1}{2}$, $-\frac{2}{3}$, $-\frac{2}{3}$ and goes through $(0, -3)$	d) of degree 4 that has $-\frac{1}{2}$ as a root of multiplicity 3, and $2x^2 - x - 1$ as a factor
 e) of degree 4, whose zeros include 0, 2, which has a factor of x² - 2x - 5, and whose graph contains the point (3, 12) 	f) of the least degree that is symmetric to the $y - axis$, touches but does not go through the $x - axis$ at $x = 3$, and has P(0) = 27

8. If a polynomial function of even degree has a positive leading coefficient and a negative y - intercept, what is the minimum number of real roots it could have?

See Website for Detailed Answer Key

Extra Work Space