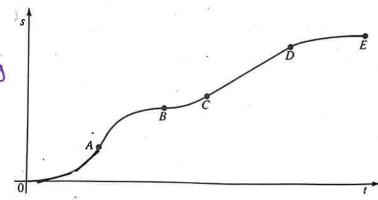

Section 3.2 – Practice Problems


- 1. The graph of a velocity function is shown. State whether the acceleration is positive, zero, or negative from:
 - a) 0 to A

Positive

consider the slope of the target line

- The graph of a position function is shown.
- a) For the part of the graph from 0 to A, use slopes of tangents to decide whether the velocity is increasing or decreasing. Is the acceleration positive or negative?

- b) State whether the acceleration is positive, zero, or negative from:

3. The position functions give the displacement s as a function of the time t. Find the velocity and acceleration as functions of t.

a)
$$s = 12 + 30t$$

b)
$$s = 16t^2 + 5t - 10$$

c)
$$s = t^3 + 5t^2 + t + 1$$

d)
$$s = \sqrt{t^2 + t}$$

$$v(t) = \frac{1}{2\sqrt{t^2+t}} \cdot (2t+1) = \frac{2t+1}{2\sqrt{t^2+t}}$$

$$a(t) = \frac{1}{2} \left[\frac{1}{124t} (2) - (2t+1) \left(\frac{1}{21124t} \right) \right]$$

$$a(t) = \frac{1}{2} \left[\frac{(t^2 + t)(4) - (2t + 1)^2}{2\sqrt{t^2 + t^2}(t^2 + 1)} \right] = \frac{-1}{4(t^2 + t)^{3/2}}$$

4. The position functions give s (in meters) as a function of t (in seconds). Find the acceleration at 4s.

a)
$$s = 100 - 15t - 4.9t^2$$

$$a(4) = -9.8 \text{m/s}^2$$

(b)
$$s = t^3 - t^2$$

c)
$$s = t^3 - 2t^2 + 3t - 5$$

d)
$$s = \frac{5t}{1+t}$$
 $v(t) = \frac{(1+t)(s) - 5t(1)}{(1+t)^2}$
 $v(t) = \frac{5+5t-5t}{(1+t)^2} = \frac{5}{(1+t)^2}$
 $a(t) = \frac{(1+t)^2(0) - 5(2(1+t)(1))}{(1+t)^4}$
 $= \frac{-10(1+t)}{(1+t)^4} = \frac{-10}{(1+t)^3}$ at $t \ge 4$
 $\frac{-10}{125} = \frac{-0.08m(s^2)}{125}$

- 5. A position function is given by $s = s_0 + v_0 t + \frac{1}{2}gt^2$, where s_0, v_0 and g are constants. Find:
- a) The initial position

b) The initial velocity

c) The acceleration

6. The position function of a particle is $s = t^3 - 12t$, $t \ge 0$, where s is measured in meters and t is measured in seconds. Find the acceleration at the instant when the velocity is 0.

$$v(t) = 3t^2 - 12$$
 \Rightarrow when $v(t) = 0$ $0 = 3t^2 - 12$ $t^2 = 4$ $t = 2 secs$ $a(t) = 6t$

when
$$v(t) = 0$$
 is at $t = 2$

$$a(2) = 6(2) = 12m_{15}^{2}$$

- 7. A particle moves according to the equation of motion $s = t^3 9t^2 + 18t$, where s is measured in meters and t is measured in seconds.
- a) When is the acceleration 0.

$$v(t) = 3t^2 - 18t + 18$$

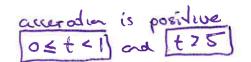
 $a(t) = 6t - 18$
 $0 = 6t - 18$ $t = 3 secs$

b) Find the displacement and velocity at that time.

$$S(3) = 3^3 - 9(3)^2 + (8(3))$$

$$27 - 81 + 54$$

$$= 27 - 54 + 18$$


$$= 0 \text{ m}$$

$$= -9 \text{ m/s}$$

8. The position function of a particle is $s = t^4 - 12t^3 + 30t^2 + 5t$, $t \ge 0$. When is the acceleration positive and when is it negative?

$$v(t) = 4t^3 - 36t^2 + 60t + 5$$

$$a(t) = 12t^2 - 72t + 60$$

acceleration is negative

164 < 5

- 9. A car is travelling at 72km/h and the brakes are fully applied, producing a constant deceleration of 12m/s²
- a) Verify that the velocity function v(t) = -12t + 20, where t is measured in seconds, gives this deceleration and initial velocity.

$$\frac{72 \text{ lcm}}{1 \text{ lr}} \cdot \frac{1000 \text{ m}}{1 \text{ km}} \cdot \frac{1 \text{ hr}}{60 \text{ min}} \cdot \frac{1 \text{ min}}{60 \text{ sec}} \Rightarrow 20 \text{ m}$$

$$V(0) = 20 \text{ m/s}$$

b) How long does it take for the car to come to a complete stop?

Time to stop gives velocity O

$$-20 = -12t$$