Calculus 12 ; Ch. 3: Applications of Derivatives

Section 3.2 — Practice Problems

1. The graph of a velocity function is shown. State whether the acceleration is positive,
Zero, or negative from:

a) O0toA b) AtoB ¢c) BtoC d CtoD e) DtoE
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‘ 2. The graph of a position function is shown.

a) For the part of the graph from 0 to A, use slopes of tangents to decide whether the
velocity is increasing or decreasing. Is the acceleration positive or negative?
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b) State whether the acceleration is positive, zero, or negative from:
a) AtoB b) BtoC c) CtoD d) DtoE
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Calculus 12

3. The position functions give the displacement s as a function of the time ¢. Find the
velocity and acceleration as functions of t.

a) s=12+30t
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b) s=16t%+5t-10
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4. The position functions give s (in meters) as a function of t (in seconds). Find the

acceleration at 4s.

a) s=100— 15t — 4.9t?
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b) s=1t3—1t2
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5. A position function is given by s = s5¢ + vyt + 3 gt?, where sy, v and g are constants.
Find:

a) The initial position
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b) The initial velocity
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¢) The acceleration
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6. The position function of a particle is s = t3 — 12t,t > 0, where s is measured in meters .
and ¢ is measured in seconds. Find the acceleration at the instant when the velocity is 0.
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7. A particle moves according to the equation of motion s = t3 — 9t2 + 18t, where s is
measured in meters and ¢ is measured in seconds.

a) When is the acceleration 0.
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b) Find the displacement and velocity at that time.

$(3) = 3 - () +8(2) V&

A]

'3(3)1— (8(3) + B
27 -8t + 4

: %Om\

1)

At -S4 t(1Q

13




Calculus 12 ; Ch. 3: Applications of Derivatives

8. The position function of a particle is s = t* — 12t3 + 30t2 + 5¢, t > 0. When is the
acceleration positive and when is it negative?
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9. A caris travelling at 72km/h and the brakes are fully applied, producing a constant
deceleration of 12m/s?

a) Verify that the velocity function v(t) = —12t + 20, where t is measured in seconds,
gives this deceleration and initial velocity.
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b) How long does it take for the car to come to a complete stop?
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