3.2 Acceleration

second derivative of the position function

Acceleration is a vector and is defined as the rate of change of velocity with respect to time. The acceleration function a(t) is the first derivative of the velocity function v(t).

$$a(t)=v'(t)=\frac{dv}{dt}$$

Since the velocity function is the first derivative of the position function s(t), then the acceleration function is the second derivative of the position function.

$$a(t) = v'(t) = s''(t)$$

Which written in Leibniz notation,

$$a = \frac{dv}{dt} = \frac{d^2s}{dt^2}$$

If all quantities are measured in SI units² metres, and seconds, then velocity as we saw before is measured in m/s and acceleration is measured in m/s². The sign convention discussed in the previous section applies here as well.

Ex. 1

The position function of a particle is given by $s(t) = t^3 + 2t^2 + 2t$, where s is measured in metres and t in seconds.

(a) Find the velocity and acceleration as a function of time.

(b) Find the acceleration at 3 s.

$$a(t) = 3t^2 + 4t + 2$$
 b) $a(3) = 6(3) + 4$ = $22m/5^2$

Ex. 2

The position of a ball thrown directly upward from ground level is given by $s(t) = 24.5t - 4.9t^2$, where s is measured in metres and t in seconds.

(a) Find the initial velocity of the ball.

(b) Find the acceleration of the ball.

(c) Find the maximum height the ball reaches.

a)
$$v(t) = 24.5 - 9.8t$$
 initial velocity at $t = 0$. is $24.5m/s$
b) $a(t) = -9.8m/s^2$
c) Max height occurs who $v(t) = 0$

$$5(2.5) = 24.5(2.5) - 4.9(2.5)^2$$
Homework Assignment
• Section 3.2: #1-9

² The International System of Units is the modern form of the metric system you are familiar with.