
Section 3.1 – Practice Problems

1. The graph shows the position function of a car.

a) What was the initial velocity of the car?

Omis

b) Was the car going faster at B or C?

C (slope of tegged line is steeper)

c) Was the car slowing down or speeding up at A, B, and C?

Speeding up at A and C stowing down at B

d) What happened between D and E?

The cor stopped

e) What happened at F?

The cor returned to where it storted (position fundian)

2. The position functions give s (in meters) as a function of t (in seconds). Find the velocity as a function of time and the velocities after 2s and 4s.

a)
$$s = 5 + 12t$$

5'(4)= 12

at 2 secs

of 4 sccs

12m/s

b)
$$s = 8t^2 - 24t + 5$$

s'(+)= 16t-24

et 2 secs

8mls

at 4 secs

40ms

c)
$$s = t^3 - 6t^2$$

 $S'(t) = 3t^2 - (2t)$
ch $2 s \cos \left[-12 m/s \right]$
and $4 s \cos \left[0 m/s \right]$

d)
$$s = \frac{5t}{1+t}$$

$$s'(t) = \frac{(1+t)(s) - ((5t))}{(1+t)^{2}}$$

$$\frac{5+5t-5t}{(1+t)^{2}} = \frac{5}{(1+t)^{2}}$$

$$ct 2 sccs \frac{5}{q} \frac{m/s}{s}$$

$$ad 4 sccs \frac{1}{s} \frac{m}{s}$$

3. If a stone is thrown downward with a speed of 15m/s from a cliff that is 80m high, its height in meters after t seconds is $h = 80 - 15t - 4.9t^2$. Find the velocity after 1s and 2s.

- 4. If a ball is thrown directly upward with an initial velocity of 24.5m/s, then its height after t seconds, in meters, is $h = 24.5t 4.9t^2$.
- a) Find the velocity after 1s, 2s, 3s, and 4s.

b) When does he ball reach its maximum height?

$$0 = 24.5 - 9.8t \rightarrow -24.5 = t$$

t = 2.5 secs

24,5-4,9t = 0

c) What is the maximum height?

$$h(2.5) = 24.5(2.5) - 4.9(2.5)^{2}$$
= $30.6m$

d) When does it hit the ground?

e) With what velocity does it hit the ground?

5. The distance travelled by a car is given by $s = 160t^2 + 20t$, where t is measured in hours and s in kilometers. When did the velocity reach 100km/h?

6. The position function of a particle is $s = t^3 - 3t^2 - 5t$, $t \ge 0$, where t is measured in seconds and s in meters. When does the particle reach a velocity of 4m/s?

$$s'(t) = 3t^2 - 6t - 5$$

$$0 = (t^2 - 2t - 3)$$

$$4 = 3t^2 - 6t - 5$$

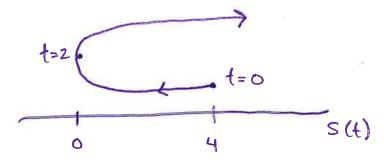
$$0 = (t - 3)(t + 1)$$

$$0 = 3t^2 - 6t - 9$$

$$t = 3$$

$$0 = (t - 3)(t + 1)$$

$$t = 3$$
or $t = -1$


- 7. The position of a particle is given by $s = t^2 4t + 4$, $t \ge 0$ where s is measured in meters and t is measured in seconds.
- a) Find the velocity after 1s and 3s.

$$s'(4) = 2t - 4$$

 $s'(1) = -2m/s$ $s'(3) = 2m/s$

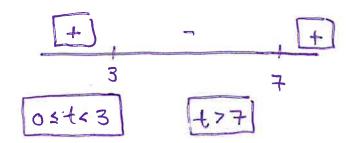
b) When is the particle at rest?

c) When is the particle moving in the positive direction?

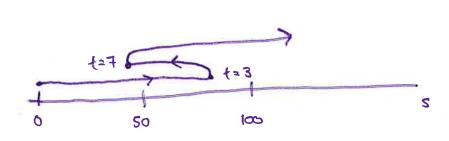
d) Draw a diagram to illustrate the motion of the particle.

at rest at 3 secs and 7 secs

- 8. The motion of a particle is described by the position function $s = t^3 15t^2 + 63t$, $t \ge 0$ where t is measured in seconds and s is measured in meters.
- a) When is the particle at rest?


$$v(t) = 3t^{2} - 30t + 63$$

$$0 = 3t^{2} - 30t + 63$$


$$0 = t^{2} - 10t + 21$$

$$0 = (t - 3)(t - 7)$$

b) When is the particle moving in the positive direction?

c) Draw a diagram to illustrate the motion of the particle.

d) Find the total distance travelled in the first 10s.

when
$$t = 3$$

 $s(3) = 81$
 $t = 7$
 $s(7) = 49$

t=0 S(0)=0

$$|s(3)-s(0)| + |s(7)-s(3)| + |s(0)-s(7)|$$

 $|81-0| + |49-8|| + |130-49|$
 $|81+32+8|$

- 9. If a ball is thrown upward with a velocity of 10m/s from top of the CN Tower, 450m above the ground. Then the distance, in meters, of the ball above the ground level after t seconds is $s = 450 + 10t 5t^2$
- a) When does the ball reach its maximum height?

$$s'(4) = 0$$
 is max height $s'(4) = 10 - 10t$

$$0 = 10 - 10t$$

$$-\frac{10}{10} = t$$

b) Use the quadratic formula to find how long it takes for the ball to reach the ground.

$$0 = 450 + 104 - 5t^{2}$$

$$-b \pm \sqrt{b^{2} - 4ac} \qquad -10 \pm \sqrt{10^{2} - 4(-s)(4s0)}$$

$$2a \qquad \qquad 2(-s)$$

$$Positive time only
$$= -10 \pm \sqrt{9100} \qquad = -10 \pm \sqrt{100}$$

$$1 + \sqrt{910} = 10.58c$$

$$= 1 \pm \sqrt{91}$$$$

c) Find the approximate velocity with which the ball strikes the ground.

$$V(10.5) = 10 - 10(10.5)$$

$$approx [-95m/s]$$