Section 3.1 - Polynomials

- We have seen Polynomials many times up to this point, but now we finally put it all together

Definition of a Polynomial

Let $a_{n}, a_{n-1}, a_{n-2}, \ldots, a_{2}, a_{1}, a_{0}$ be real numbers, and n a whole number.

A Polynomial is an expression of the form:

$$
a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}, \quad \text { with } a_{n} \neq 0
$$

The Polynomial is of degree n, with a_{n} the leading coefficient

- We have mentioned Quadratics repeatedly, it is a Polynomial with a special name, there are more:

Polynomials in Standard Form	Degree	Leading Coefficient	Special Name
$f(x)=7 x^{4}+5 x^{3}-2 x+6$	4	7	Quartic
$h(x)=-2 x^{3}+5 x^{2}-8 x-7$	3	-2	Cubic
$g(x)=\sqrt{3} x^{2}-x+1$	2	$\sqrt{3}$	Quadratic
$k(x)=5 x+6$	1	5	Linear
$r(x)=6$	0	6	Constant

- Remember that to be classified as a Polynomial you must have:

A WHOLE NUMBER EXPONENT on the VARIABLES

The CONSTANTS are REAL NUMBERS

Examples:

$f(x)=3 x^{-1}+2 x-5$,
is NOT a POLYNOMIAL, the exponent on the variables is not a whole number
$g(x)=\sqrt{2} x^{3}+\sqrt{-3} x$, is NOT a POLYNOMIAL, the coefficient $\sqrt{-3}$ is not real.
$h(x)=\frac{2 x-3}{x^{2}}$,
is NOT a POLYNOMIAL, the x^{2} in the denominator is an x^{-2} in the numerator
$m(x)=3 x-7 x^{\frac{1}{2}}$,
is NOT a POLYNOMIAL, the exponent of the variable is not a whole number

Shape of Polynomial Graphs

- Polynomials are what we call CONTINOUS GRAPHS, they do not have breaks, corners, or sharp edges
- You can graph a Polynomial without lifting your pencil off the paper.

Example of NON-POLYNOMIAL graphs

This graph has a break in it.

Example of POLYNOMIAL graphs

This graph has a sharp corner.

Polynomials of the form $f(x)=x^{n} \quad$ and their reflections in the x-axis $f(x)=-x^{n}$
This is the start of examining the end-behaviour of polynomials.

- What we are examining is a reflection in the x-axis
- A sign change of the y-values of the original graph
- You will start to see a pattern to this and we can identify a relationship between graph with a negative first term or a positive first term

See the examples on the next page

Examples

$$
f(x)=x
$$

$$
f(x)=x^{2}
$$

$f(x)=x^{3}$

$$
f(x)=-x
$$

$f(x)=-x^{2}$

$$
f(x)=-x^{3}
$$

Comparing End-Behaviour of Functions

- When we say 'end-behaviour', what we mean is:
"What happens to the graphs as x gets infinitely large or small?"
- This is expressed as:

Consider this...

$f(x)=$	$\begin{gathered} x^{n} \\ n \text { is odd } \end{gathered}$	$\begin{gathered} -x^{n} \\ n \text { is odd } \end{gathered}$	$\begin{gathered} x^{n} \\ \text { nis even } \end{gathered}$	$-x^{n}$ n is even
Domain Range	All Real \#'s All Real \#'s	All Real \#'s All Real \#'s	All Real \#'s $y \geq \mathbf{0}$	All Real \#'s $y \leq 0$
$x \rightarrow \infty$	$f(x)$ increases $f(x) \rightarrow \infty$	$f(x)$ decreases $f(x) \rightarrow-\infty$	$f(x) \text { increases }$ $f(x) \rightarrow \infty$	$f(x)$ decreases $f(x) \rightarrow-\infty$
$x \rightarrow-\infty$	$\begin{gathered} f(x) \text { decreases } \\ f(x) \rightarrow-\infty \end{gathered}$	$f(x) \text { increases }$ $f(x) \rightarrow \infty$	$f(x) \text { increases }$ $f(x) \rightarrow \infty$	$f(x)$ decreases $f(x) \rightarrow-\infty$

One-term function and multi-term function, do not change in their end-behaviour, all that matters is the leading term! Let's see that as an example.

If $f(x)=x^{4} \quad$ and $\quad g(x)=x^{4}-5 x^{2}+4$

x	$f(x)$	$g(x)$
0	0	4
2	16	0
-2	16	0
5	625	504
-5	625	504
10	10000	9504
-10	10000	9504
100	10^{8}	$9.99 \cdot 10^{7}$
-100	10^{8}	$9.99 \cdot 10^{7}$

Degree and Leading Coefficient of Polynomial Functions

- The main contributors to the change in end-behaviour is the leading term: $a_{n} x^{n}$
- The leading coefficient $a_{\boldsymbol{n}}$ will give you the end-behaviour direction
- The exponent n will tell you the shape

If the degree of the Polynomial is odd: The ends will be in opposite directions

- A Positive Leading Coefficient (a): Down on the Left, Up on the Right
- A Negative Leading Coefficient ($-\boldsymbol{a}$): Down on the Right, Up on the Left

If the degree of the Polynomial is even: The ends will be in same direction

- A Positive Leading Coefficient (a): Up on the Left, Up on the Right
- A Negative Leading Coefficient ($-\boldsymbol{a}$): Down on the Right, Down on the Left

$$
2 x^{4}+\cdots
$$

Constant Value of a Polynomial

- The constant is an important term, it is the one without a variable.
- Why so important?
- Because when $\boldsymbol{x}=0$, we have the \boldsymbol{y}-intercept

The Constant is the y-intercept

Consider...

$y=-2 x^{3}+\cdots+9$

$$
y=x^{4}+\cdots-7
$$

Examples: Find the y-intercept of the following Polynomial Functions
a) $f(x)=-2(x+1)^{3}$
b) $g(x)=(2 x-1)(x+4)(x-3)$
c) $h(x)=x^{4}-5$

Solutions: \quad Remember, we get the y-intercvept, when $x=0$
a) $f(x)=-2(x+1)^{3} \rightarrow f(0)=-2(0+1)^{3} \quad \rightarrow \quad f(0)=-2$

$$
y-\text { int is }(0,-2)
$$

b) $g(x)=(2 x-1)(x+4)(x-3) \quad \rightarrow \quad g(x)=(2(0)-1)(0+4)(0-3) \quad \rightarrow \quad g(0)=12$

$$
y-\text { int is }(0,12)
$$

c) $h(x)=x^{4}-5 \quad \rightarrow \quad h(0)=0^{4}-5 \quad \rightarrow \quad h(0)=-5$

$$
y-\text { int is }(0,-5)
$$

Zeros of a Polynomial Function

Recall from Pre-Calculus 11 that the 'Zeros of a Polynomial' are the:

- x-intercepts
- Solutions

All the Same Thing

- Roots

Example: Find the Real Zeros of:
a) $f(x)=-3 x^{4}+3 x^{2}$
b) $g(x)=x^{3}-2 x^{2}+x-2$

Solution:

a) $f(x)=-3 x^{4}+3 x^{2} \quad \rightarrow$

$$
f(x)=-3 x^{2}\left(x^{2}-1\right)
$$

$$
\rightarrow \quad f(x)=-3 x^{2}(x+1)(x-1)
$$

Solve for the factor when $f(x)=0, \quad$ so: $\quad-3 x^{2}=0, \quad(x+1)=0, \quad(x-1)=0$

$$
x=0,1,-1
$$

b) $g(x)=x^{3}-2 x^{2}+x-2 \quad \rightarrow \quad g(x)=\left(x^{3}-2 x^{2}\right)(+x-2)$

$$
\begin{array}{ll}
\rightarrow & g(x)=x^{2}(x-2)+1(x-2) \\
\rightarrow & g(x)=\left(x^{2}+1\right)(x-2)
\end{array}
$$

Solve for the factor when $g(x)=0, \quad$ so: $\quad x^{2}+1=0$ (Has No Solution), $\quad(x-2)=0$

$$
x=2
$$

Zeros and Turning Points of a Degree \boldsymbol{n} Polynomial

- A Polynomial of degree n, has at most, n real zeros
- An $n^{\text {th }}$ degree polynomial, with n an even number, can intersect the \boldsymbol{x}-axis anywhere from 0 tontimes

Remember, Even Degree Polynomials start and end both up or down, so do not have to cross the x-axis

- An $n^{\text {th }}$ degree polynomial, with n an odd number, can intersect the \boldsymbol{x} - axis anywhere from 1 to n times

Example: What is the minimum and maximum number of intersections of the x-axis for the following polynomial functions?
a) $y=-9 x^{5}+\cdots$
b) $y=5 x^{4}+\cdots$

Solution:

a) Since it is an odd n value, minimum is $\mathbf{1}$ and maximum is \boldsymbol{n} (so 5)
b) Since it is an even \boldsymbol{n} value, minimum is $\mathbf{0}$ and maximum is \boldsymbol{n} (so 4)

Turning Points

- If a polynomial has \boldsymbol{n} turning points, it is of minimum degree: $\quad(\boldsymbol{n}+\mathbf{1})$
- In other words:

The number of turning points of a graph is one less than its degree

Minimum Degree of 5

Minimum Degree of 4

Multiplicity of a Polynomial

- A polynomial of degree n, had at most, n distinct solutions.
- But if a solution repeats itself, we say that the solution has multiplicity of the number of times it is repeated.
- If you end up with the same root, or a factor to a power, we have that multiplicity of the solution

$$
\begin{array}{ll}
f(x)=x^{4}+x^{3}-6 x^{2} & \text { Degree 4, } 0 \text { to } 4 \text { roots } \\
0=x^{2}\left(x^{2}+x-6\right) & \\
0=x^{2}(x+3)(x-2) & \text { Factor Completely }
\end{array}
$$

x^{2} has zero at 0, mulitiplicity 2
$(x+3)$ has zero at -3 , multiplicity 1
$(x-2)$ has zero at 2 , multiplicity 1

Section 3.1 - Practice Problems

1. Suppose $y=f(x)$ has the point (a, b). Write (a, b) with the transformations described.
a) A polynomial is \qquad , because it has no gaps, breaks, of holes.
c) A polynomial of odd degree has at most how many zeros? At least how many zeros? How many turning points?
b) A polynomial of even degree has at most how many zeros? At least how many zeros? How many turning points?
d) If $x=a$ is a zero of a polynomial then:
$x=a$ is also called a \qquad

A factor of the polynomial is: \qquad
$(a, 0)$ is what kind of intercept?
e) A polynomial written in Standard Form is written with powers on the variables in what kind of order?
2. Are the following equations polynomials? If so, state the degree, leading coefficient, and special name (if available), if it is not a polynomial, state the reason.

Equation	Polynomial \mathbf{Y} / \mathbf{N}	Degree	Leading Coefficient	Special Name
a) $-2 x^{3}+x^{2}-5$				
b) $\sqrt{2} x^{4}-\sqrt{3 x}+2$				
c) $-\frac{1}{3} x^{2}+\sqrt{-2} x+1$				
d) $3 x+2$				
e) 5				

3. Which of the following graphs are Polynomial? If they are not, explain why.
a)

b)

c)

d)

e)

f)

4. What are the real zeros of the following polynomials?
a)

b)

5. What is the max/min number of zeros of the following Polynomials.
a) $3 x^{5}+3 x^{4}-2 x^{2}+1=0$

$$
8 x^{6}+3 x^{4}-2 x^{2}+1=0
$$

b) Given a general polynomial:

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

What is the max/min number of roots when n is odd?

What is the $\mathrm{max} / \mathrm{min}$ number of roots when n is even? \qquad
6. State whether the following are polynomial functions. If so, what is the degree, if not why?

a) $f(x)=-x^{4}+4 x^{4}+2$	b) $f(x)=\sqrt{x}$
c) $f(x)=\frac{1}{x}$	d) $f(x)=0$
e) $f(x)=(x-2)^{3}$	f) $f(x)=(x+1)^{-2}$
g) $f(x)=x^{3}-\sqrt{2} x+\frac{1}{3}$	h) $f(x)=2^{-3} x^{2}$
i) $f(x)=\sqrt{2} x^{2}$	j) $f(x)=\frac{1}{x+1}$

7. Determine the end behaviour of the polynomials below.

g) $f(x)=3 x^{4}-x^{2}+1$
h) $f(x)=-3 x^{4}+x^{2}-1$
i) $f(x)=x^{4}+2 x^{3}+x^{5}-2$
j) $f(x)=x^{4}-2 x^{3}-x^{5}+2$
8. Find a function in the form $y=c x^{n}$ that has the same end behaviour as the given function.
a) $f(x)=-3 x^{3}-2 x^{2}+1$
b) $g(x)=2 x^{3}+x^{2}-1$
c) $h(x)=2.3 x^{4}-4 x^{2}+6 x$
d) $k(x)=-2.4 x^{5}+3 x^{4}-2 x-1$
9. Find all the real zeros, and the multiplicity of each zero.
a) $f(x)=x^{2}-4$
b) $f(x)=(x-4)^{2}$

i) $\quad l(x)=-x^{3}-3 x^{2}+4 x+12$
k) $m(x)=x^{4}-2 x^{2}+1$
j) $l(x)=x^{3}-5 x^{2}-x+5$
I) $m(x)=-x^{4}+3 x^{2}-2$
m) $n(x)=-x^{4}+4 x^{3}-4 x^{2}$
n) $n(x)=-x^{2}\left(x^{2}-1\right)+4\left(x^{2}-1\right)$

See Website for Detailed Answer Key of the Remainder of the Questions

Extra Work Space

