Section 3.1 – Polynomials

• We have seen Polynomials many times up to this point, but now we finally put it all together

Definition of a Polynomial

Let $a_n, a_{n-1}, a_{n-2}, \dots, a_2, a_1, a_0$ be real numbers, and n a whole number.

A Polynomial is an expression of the form:

 $a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$, with $a_n \neq 0$.

The Polynomial is of *degree* n, with a_n the leading coefficient

• We have mentioned Quadratics repeatedly, it is a Polynomial with a special name, there are more:

Polynomials in Standard Form	Degree	Leading Coefficient	Special Name
$f(x) = 7x^4 + 5x^3 - 2x + 6$	4	7	Quartic
$h(x) = -2x^3 + 5x^2 - 8x - 7$	3	-2	Cubic
$g(x) = \sqrt{3}x^2 - x + 1$	2	$\sqrt{3}$	Quadratic
k(x) = 5x + 6	1	5	Linear
r(x)=6	0	6	Constant

• Remember that to be classified as a Polynomial you must have:

A WHOLE NUMBER EXPONENT on the VARIABLES

The CONSTANTS are REAL NUMBERS

Examples:

$$f(x) = 3x^{-1} + 2x - 5$$
,is NOT a POLYNOMIAL, the exponent on the variables is not a whole number $g(x) = \sqrt{2}x^3 + \sqrt{-3}x$,is NOT a POLYNOMIAL, the coefficient $\sqrt{-3}$ is not real. $h(x) = \frac{2x-3}{x^2}$,is NOT a POLYNOMIAL, the x^2 in the denominator is an x^{-2} in the numerator $m(x) = 3x - 7x^{\frac{1}{2}}$,is NOT a POLYNOMIAL, the exponent of the variable is not a whole number

Shape of Polynomial Graphs

- Polynomials are what we call CONTINOUS GRAPHS, they do not have breaks, corners, or sharp edges
- You can graph a Polynomial without lifting your pencil off the paper.

Example of NON-POLYNOMIAL graphs

This graph has a break in it.

This graph has a sharp corner.

Example of POLYNOMIAL graphs

Polynomials of the form $f(x) = x^n$ and their reflections in the $x - axis f(x) = -x^n$

This is the start of examining the end-behaviour of polynomials.

- What we are examining is a reflection in the x axis
- A sign change of the y values of the original graph
- You will start to see a pattern to this and we can identify a relationship between graph with a negative first term or a positive first term

See the examples on the next page

Pre-Calculus 12

Examples

 $f(x) = x^2$

3

Comparing End-Behaviour of Functions

- When we say 'end-behaviour', what we mean is:
 - "What happens to the graphs as x gets infinitely large or small?"
- This is expressed as:

Consider this...

f(x) =	x^n	$-x^n$	x^n	$-x^n$
	n is odd	n is odd	n is even	n is even
Domain	All Real #'s	All Real #'s	All Real #'s	All Real #'s
Range	All Real #'s	All Real #'s	$y \ge 0$	$y \leq 0$
	f(x) increases	f(x) decreases	f(x) increases	f(x) decreases
$x ightarrow \infty$				
	$f(x) \to \infty$	$f(x) \to -\infty$	$f(x) \to \infty$	$f(x) \to -\infty$
	f(x) decreases	f(x) increases	f(x) increases	f(x) decreases
$x \to -\infty$				
	$f(x) \rightarrow -\infty$	$f(x) \to \infty$	$f(x) \to \infty$	$f(x) \rightarrow -\infty$

One-term function and **multi-term function**, <u>do not change</u> in their **end-behaviour**, all that matters is the leading term! Let's see that as an example.

If $f(x) = x^4$ and $g(x) = x^4 - 5x^2 + 4$				
	x	f(x)	g(x)	
	0	0	4	
	2	16	0	
	-2	16	0	
	5	625	504	
	-5	625	504	
	10	10 000	9504	
	-10	10 000	9504	
	100	108	9.99 · 10 ⁷	
	-100	10 ⁸	9.99 · 10 ⁷	

Degree and Leading Coefficient of Polynomial Functions

- The main contributors to the change in end-behaviour is the leading term: $a_n x^n$
- The leading coefficient a_n will give you the end-behaviour direction
- The exponent *n* will tell you the shape

If the degree of the Polynomial is odd: The ends will be in opposite directions

- A Positive Leading Coefficient (*a*): Down on the Left, Up on the Right
- A Negative Leading Coefficient (-a): Down on the Right, Up on the Left

If the degree of the Polynomial is even: The ends will be in same direction

- A Positive Leading Coefficient (*a*): Up on the Left, Up on the Right
- A Negative Leading Coefficient (-a): Down on the Right, Down on the Left

Constant Value of a Polynomial

- The constant is an important term, it is the one without a variable.
- Why so important?
- Because when x = 0, we have the y intercept

The Constant is the y – intercept

Consider...

Examples: Find the y - intercept of the following Polynomial Functions a) $f(x) = -2(x + 1)^3$ b) g(x) = (2x - 1)(x + 4)(x - 3) c) $h(x) = x^4 - 5$ **Solutions:** Remember, we get the y - intercvept, when x = 0a) $f(x) = -2(x + 1)^3 \rightarrow f(0) = -2(0 + 1)^3 \rightarrow f(0) = -2$

y - int is (0, -2)

b)
$$g(x) = (2x - 1)(x + 4)(x - 3) \rightarrow g(x) = (2(0) - 1)(0 + 4)(0 - 3) \rightarrow g(0) = 12$$

y - int is (0, 12)

c) $h(x) = x^4 - 5 \rightarrow h(0) = 0^4 - 5 \rightarrow h(0) = -5$

y - int is (0, -5)

Zeros of a Polynomial Function

Recall from Pre-Calculus 11 that the 'Zeros of a Polynomial' are the:

- *x intercepts*
- Solutions
 All the Same Thing
- Roots

Example: Find the Real Zeros of: a) $f(x) = -3x^4 + 3x^2$ b) $g(x) = x^3 - 2x^2 + x - 2$

Solution:

a)
$$f(x) = -3x^4 + 3x^2 \rightarrow f(x) = -3x^2(x^2 - 1)$$

 $\rightarrow f(x) = -3x^2(x + 1)(x - 1)$ Difference of Squares

Solve for the factor when f(x) = 0, so: $-3x^2 = 0$, (x + 1) = 0, (x - 1) = 0

x = 0, 1, -1

b)
$$g(x) = x^3 - 2x^2 + x - 2 \rightarrow g(x) = (x^3 - 2x^2)(+x - 2)$$

 $\rightarrow g(x) = x^2(x - 2) + 1(x - 2)$
 $\rightarrow g(x) = (x^2 + 1)(x - 2)$

Solve for the factor when g(x) = 0, so: $x^2 + 1 = 0$ (*Has No Solution*), (x - 2) = 0

x = 2

Zeros and Turning Points of a Degree *n* Polynomial

- A Polynomial of *degree n*, has at most, *n real zeros*
- An nth degree polynomial, with n an even number, can intersect the x axis anywhere from 0 to n times
 Remember, Even Degree Polynomials start and end both up or down, so do not have to cross the x axis

 An nth degree polynomial, with *n* an odd number, can intersect the x – axis anywhere from 1 to n times Remember, Odd Degree Polynomials start and end in opposite directions, so do have to cross the x – axis

 $\frac{1}{2}$

Example: What is the minimum and maximum number of intersections of the x - axis for the following polynomial functions?

a)
$$y = -9x^5 + \cdots$$
 b) $y = 5x^4 + \cdots$

Solution:

- a) Since it is an *odd n value, minimum is* 1 and *maximum is n* (so 5)
- b) Since it is an *even n value*, *minimum is* **0** and *maximum is n* (so 4)

Turning Points

- If a polynomial has *n* turning points, it is of minimum degree: (n+1)
- In other words:

The number of turning points of a graph is one less than its degree

Minimum Degree of 5

Minimum Degree of 4

Multiplicity of a Polynomial

- A polynomial of degree n, had at most, n distinct solutions.
- But if a solution repeats itself, we say that the solution has multiplicity of the number of times it is repeated.
- If you end up with the same root, or a factor to a power, we have that multiplicity of the solution

$$f(x) = x^{4} + x^{3} - 6x^{2}$$
 Degree 4, 0 to 4 roots

$$0 = x^{2}(x^{2} + x - 6)$$

$$0 = x^{2}(x + 3)(x - 2)$$
 Factor Completely

 x^2 has zero at 0, mulitiplicity 2 (x + 3) has zero at - 3, multiplicity 1 (x - 2) has zero at 2, multiplicity 1

www.mrherlaar.weebly.com

Section 3.1 – Practice Problems

1. Suppose y = f(x) has the point (a, b). Write (a, b) with the transformations described.

a)	A polynomial is, because it has no gaps, breaks, of holes.	b)	A polynomial of even degree has at most how many zeros? At least how many zeros? How many turning points?
c)	A polynomial of odd degree has at most how many zeros? At least how many zeros? How many turning points?	d)	If $x = a$ is a zero of a polynomial then: x = a is also called a A factor of the polynomial is: (a, 0) is what kind of intercept?
e)	A polynomial written in Standard Form is written with powers on the variables in what kind of order?	I	

2. Are the following equations polynomials? If so, state the degree, leading coefficient, and special name (if available), if it is not a polynomial, state the reason.

	Equation	Polynomial Y/N	Degree	Leading Coefficient	Special Name
a)	$-2x^3 + x^2 - 5$				
b)	$\sqrt{2}x^4 - \sqrt{3x} + 2$				
c)	$-\frac{1}{3}x^2 + \sqrt{-2}x + 1$				
d)	3x + 2				
e)	5				

- b) a) 10 -20 5 10 -10 10 0 -5 5 -20 -10 10 -5 c) d) 10 5 5 -5 0 5 10 -10 10 -5 0 5 -5 -5 10 e) f) 10 10 5 -5 10 -5 0 5 10 -5 0 5 5
- 3. Which of the following graphs are Polynomial? If they are not, explain why.

Pre-Calculus 12

4. What are the real zeros of the following polynomials?

5. What is the max/min number of zeros of the following Polynomials.

a) $3x^5 + 3x^4 - 2x^2 + 1 = 0$ $8x^6 + 3x^4 - 2x^2 + 1 = 0$ b) Given a general polynomial:

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

What is the max/min number of roots when *n* is odd?

What is the max/min number of roots when *n* is even?

6. State whether the following are polynomial functions. If so, what is the degree, if not why?

a)
$$f(x) = -x^4 + 4x^4 + 2$$

b) $f(x) = \sqrt{x}$
c) $f(x) = \frac{1}{x}$
d) $f(x) = 0$
f) $f(x) = (x - 2)^3$
f) $f(x) = (x + 1)^{-2}$
g) $f(x) = x^3 - \sqrt{2}x + \frac{1}{3}$
h) $f(x) = 2^{-3}x^2$
j) $f(x) = \frac{1}{x + 1}$

7. Determine the end behaviour of the polynomials below.

a)
$$f(x) = 3x$$

b) $f(x) = -3x$
c) $f(x) = 2x + 3x^2$
d) $f(x) = 2x - 3x^2$
e) $f(x) = -2x + x^2 + 3x^3$
f) $f(x) = 2x - x^2 - 3x^3$

g)
$$f(x) = 3x^4 - x^2 + 1$$

h) $f(x) = -3x^4 + x^2 - 1$
i) $f(x) = x^4 + 2x^3 + x^5 - 2$
j) $f(x) = x^4 - 2x^3 - x^5 + 2$

8. Find a function in the form $y = cx^n$ that has the same end behaviour as the given function. a) $f(x) = -3x^3 - 2x^2 + 1$ (b) $g(x) = 2x^3 + x^2 - 1$

a)
$$f(x) = -3x^{2} - 2x^{2} + 1$$

b) $g(x) = 2x^{2} + x^{2} - 1$
c) $h(x) = 2.3x^{4} - 4x^{2} + 6x$
d) $k(x) = -2.4x^{5} + 3x^{4} - 2x - 1$

9. Find all the real zeros, and the multiplicity of each zero.

a) $f(x) = x^2 - 4$ b) $f(x) = (x - 4)^2$

c)
$$g(x) = x^3 - 4x^2 + 4x$$

d) $g(x) = 2x(x^2 - 2x - 1)$
e) $h(x) = x^4 - x^3 - 20x^2$
f) $h(x) = \frac{1}{3}x^4 - \frac{1}{3}$
g) $k(x) = x^4 + 3x^2 + 2$
h) $k(x) = x^3 - 4x^2 - 25x + 100$

i)
$$l(x) = -x^3 - 3x^2 + 4x + 12$$

j) $l(x) = x^3 - 5x^2 - x + 5$
k) $m(x) = x^4 - 2x^2 + 1$
l) $m(x) = -x^4 + 3x^2 - 2$
m) $n(x) = -x^4 + 4x^3 - 4x^2$
n) $n(x) = -x^2(x^2 - 1) + 4(x^2 - 1)$

See Website for Detailed Answer Key of the Remainder of the Questions

Extra Work Space