Section 3.1 – One and Two Step Equations

This booklet belongs to:______Block: _____

So, it begins....

- When we think algebra, what comes to mind?
 - Headaches, moans & groans, anxiety...
- Don't get yourself too riled up. Algebra is just the logical manipulation of an equation.
- That's where we start. With an equation.
- In order to be considered an equation you need a statement of inequality.

Either: = < > \leq \geq

- Whenever you have one of these in a statement it makes it an equation
- One side maintains equality with the other

In other words:

BALANCE

Whatever we do from this point on in an equation, we have to use logical rules in order to maintain that balance, that equality.

Addition and Subtraction

> It's called the **ADDITION PRINCIPLE (ADDING TO MAKE 0)**

Consider this,

3 = 3 we have BALANCE

So, if we ADD something to one side we have to add it to both:

$$3 + 2 = 3 + 2$$

- ◆ We use this concept to help **eliminate information** from one side of an equation
- This in turns adds it to the other side

Example 1: r - 4 = 7

On the left we have an unknown. We need to get that unknown by itself on one side of the equals sign.

How do we do that?

- Well we have -4, in order to **eliminate it**, we need it to be 0
- So, what do we **add** to -4 to make it 0, we need to **add** +4

Solution 1:

$$r - 4 + 4 = 7 + 4$$

Add +4 to both sides

And now, since -4 + 4 = 0, we get r + 0 on the left, which is r

So, after the elimination we get: r = 11 and we have solved for the unknown

- Now the previous example saw us subtracting from the unknown so we had to add a positive to both sides.
- > When we add with the unknown, we have to add a negative (subtract) from both sides.

Example 2:

q + 5 = 15	Added a negative to both sides,			
q + 5 - 5 = 15 - 5	in other words:			
q = 10	Subtracted			

Example 3:

$$r - 4 = 7$$

$$t + 5 = 2$$

$$t + 5 - 5 = 2 - 5$$

$$t = -3$$

Example 4:

q - 8 = 10	x + 4 = -6
q - 8 + 8 = 10 + 8	x + 4 - 4 = -6 - 4
q = 18	x = -10
a - 6 = -13	b + 8 = -2
a - 6 + 6 = -13 + 6	b + 8 - 8 = -2 - 8
a = -7	b = -10

Multiplication and Division

It's called the MULTIPLICATION PRINCIPLE (Multiplying to get 1)

- Multiplication and Division are inverses of one another
- > Much like adding a negative is the same as subtraction
- > Multiplying a fraction is the same as dividing

Now for multiplication and division the number we want isn't 0, it's 1

• When we are **multiplying with the variable** we have to **divide** to end up with 1

Example 5:

$$3x = 12$$

• I don't want 3x, I want 1x, so I'll have to divide by 3 (or multiply by $\frac{1}{3}$)

$$\frac{3x}{3} = 1x$$

But don't forget the whole balance thing. We need to divide both sides

$$\frac{3x}{3} = \frac{12}{3}$$
, $1x = 4 \text{ or } x = 4$

- > When we **multiply** with the **variable**, we do the **inverse**, **division**
- > Then, if we divide with the variable, we do the inverse, multiplication

Consider this,

$$\frac{1}{2} \cdot 2 = 1$$

• If you **multiply a fraction** by its **denominator** the cancel one another out, because the top and bottom divide to give you 1

$$\frac{1}{2} \cdot 2 = \frac{1 \cdot 2}{2} = \frac{2}{2} = 1$$

So,

 $\frac{t}{5} = 10,$ $5 \cdot \frac{t}{5} = 10 \cdot 5,$ $\frac{5t}{5} = 50,$ t = 50

 $\frac{t}{5} = 10$

Multiply both sides by 5 Divide the left out

Example 6:

5x = 10 -3r = 27 $\frac{5x}{5} = \frac{10}{5}$ x = 2 $-3r = \frac{27}{-3}$ r = -9

Example 7:							
4a = 3	8n = 2						
$\frac{4a}{4} = \frac{3}{4}$	$\frac{8n}{8} = \frac{2}{8}$						
$a = \frac{3}{4}$	$n=rac{1}{4}$						
$\frac{q}{5} = 2$	$\frac{d}{-4} = -8$						
$5 \cdot \frac{q}{5} = 2 \cdot 5$	$-4 \cdot \frac{d}{-4} = -8 \cdot -4$						
<i>q</i> = 10	<i>d</i> = 32						
$\frac{b}{7} = 2$	$\frac{v}{4} = -12$						
$7 \cdot \frac{b}{7} = 2 \cdot 7$	$4 \cdot \frac{v}{4} = -12 \cdot 4$						
b = 14	v = -48						

- \succ These are all 1 Step equations
- > They take 1 step to get your answer
- > Addition, Subtraction, Multiplication, and Division

Next, we will see examples that require 2 or more Steps

Two Steps

If you are multiplying with a constant with a variable and adding or subtracting a number to it.

> We need **2** *Steps*

Example 8:

$$2x + 5 = 11$$

First get rid of the number that is being added or subtract, leaving a constant-variable product

$$2x + 5 - 5 = 11 - 5$$

• The 5's cancel, leave us with:

$$2x = 6$$

Then divide the 2, on both sides, to isolate the variable and solve

$$\frac{2x}{2} = \frac{6}{2} \quad \rightarrow \qquad x = 3$$

Example 9:						
3q - 8 = 10	5x + 4 = -6					
3q - 8 + 8 = 10 + 8	5x + 4 - 4 = -6 - 4					
3q = 18	5x = -10					
$\frac{3q}{3} = \frac{18}{3} \rightarrow \qquad q = 6$	$\frac{5x}{5} = \frac{-10}{5} \rightarrow x = -2$					
3a - 6 = -13	11b + 8 = -2					
3a - 6 + 6 = -13 + 6	11b + 8 - 8 = -2 - 8					
3a = -7	11b = -10					
$\frac{3a}{3} = \frac{-7}{3} \rightarrow \qquad a = -\frac{7}{3}$	$\frac{11b}{11} = \frac{-10}{11} \to b = -\frac{10}{11}$					

If you have one fraction multiplying with a variable?

> We need **2** *Steps*

Example 10:

$$\frac{2}{3}x = 6$$

First Multiply by the Denominator on both sides

$$3 \cdot \frac{2}{3}x = 6 \cdot 3$$

• The 3's cancel on the left

$$2x = 18$$

Then Divide by the Numerator on both sides

$$\frac{2x}{2} = \frac{18}{2}$$

The 2's cancel out on the left

$$x = 9$$

Example 11:

 $\frac{4}{5}x = 4 \quad \rightarrow \qquad 5 \cdot \frac{4}{5}x = 4 \cdot 5 \qquad \rightarrow \qquad 4x = 20 \quad \rightarrow \qquad \frac{4x}{4} = \frac{20}{4} \qquad \rightarrow \qquad x = 5$

- These can be done in **1 step** by **multiplying by the reciprocal**.
- It only works in when you have **1 fraction**, a variable and the answer

$$\frac{2}{3}x = 8 \quad \rightarrow \qquad \frac{3}{2} \cdot \frac{2}{3}x = 8 \cdot \frac{3}{2} \qquad \rightarrow \qquad x = \frac{24}{2} \qquad \rightarrow \qquad x = 12$$

- Algebra is much than just solving for the unknown, at its center, it is the study and understanding of how to manipulate an equation.
- How to free-up a piece of information.
- Your experiences in math, and physics and science in particular, you will experience scenarios where you need to solve for an unknown piece of information. That is algebra.

Example 12: Solve for *a* in terms of *b*,*c*, and *d*. ab + c = d

Solution 12: What this means is that we need a =

Step 1:Subtract c from both sidesab + c - c = d - c \rightarrow ab = d - cStep 2:Divided both sides by bab = d - c \rightarrow $\frac{ab}{b} = \frac{d - c}{b}$ Step 3:Write your solution as a = $a = \frac{d - c}{b}$

- **Example 13:** Here is a classic physics equation: F = ma (Force equals mass times acceleration). Solve for *mass* in terms of Force and acceleration.
- **Solution 13:** So, we want *m* alone.

- **Example 14:** Solve for b. a b = c
- **Solution 14:** It's important to remember that we need b alone, not -b. There are a number of ways to tackle this, but here is my example.
- Step 1:Subtract a from both sidesa b a = c a $\rightarrow -b = c a$ Step 2:Multiply every term by (-1)(-1)(-b) = (-1)c (-1)a $\rightarrow b = -c + a$ Step 3:Write your solution as b =b = -c + a or b = a c

Section 3.1 – Practice Questions

EMERGING LEVEL QUESTIONS

Use the Addition and Subtraction Principle. ISOLATE THE VARIABLE, show steps.

1.	<i>w</i> + 4 = 7	2.	x + 16 = -4	3.	t - 12 = -4
4.	<i>t</i> + 9 = −3	5.	<i>k</i> − 6 = −8		w - 3 = -8
7.	<i>z</i> + 2 = 5	8.	8 = <i>j</i> + 7	9.	<i>r</i> + 5 = 12
10.	12 = l - 4	11.	15 = r + 12	12.	x + 23 = -7
13.	<i>j</i> + 7 = −4	14.	23 + f = -17	15.	<i>j</i> + 5 = −11

Use the Multiplication and Division Principle. ISOLATE THE VARIABLE, show steps.

16.	3 <i>x</i> = 12	17.	2 <i>x</i> = 24	18.	4t = -13
19.	-3t = -6	20.	-4r = 12	21.	-12m = 156
22.	3 <i>t</i> = 17	23.	-x = 4	24.	7 <i>h</i> = 2
25.	$\frac{Z}{7} = 9$	26.	$\frac{k}{6} = -2$	27.	$\frac{t}{8} = 4$
28.	$\frac{r}{3} = -3$	29.	$-\frac{j}{4} = -6$	30.	$\frac{r}{6} = 35$
31.	$-\frac{t}{2} = 5$	32.	$\frac{a}{7} = 0$	33.	$-\frac{w}{7} = -4$

Use two-step processes to solve the following

34.	3x - 5 = 10	35.	-2x + 5 = 7	36.	-4r - 4 = -4
37.	6x + 12 = -12	38.	3x - 7 = -5	39.	2x + 3 = 4
40.	-2 <i>r</i> - 5 = 9	41.	6x + 3 = -4	42.	12x - 54 = 6
43.	-7q - 2 = -9	44.	3r - 5 = 7	45.	-x + 3 = 8

PROFICIENT LEVEL QUESTIONS

EXTENDING LEVEL QUESTIONS

In each case, solve for the variable *a*

52.
$$ab + c = d$$
 53. $-a + b = -d$ 54. $\frac{b}{a} = cd$

Answer Key – Section 3.1

1. $w = 3$	2. $x = -20$	3. <i>t</i> = 8	4. $t = -12$
5. $k = -2$	6. $w = -5$	7. <i>z</i> = 3	8. <i>j</i> = 1
9. <i>r</i> = 7	10. <i>l</i> = 16	11. <i>r</i> = 3	12. $x = -30$
13. <i>j</i> = −11	14. $f = -40$	15. <i>j</i> = −16	16. $x = 4$
17. $x = 12$	18. $t = -\frac{13}{4}$	19. <i>t</i> = 2	20. $r = -3$
21. $m = -13$	22. $t = \frac{17}{3}$	23. $x = -4$	24. $h = \frac{2}{7}$
25. <i>z</i> = 63	26. $k = -12$	27. <i>t</i> = 32	28. <i>r</i> = -9
29. <i>j</i> = 24	30. <i>r</i> = 210	31. $t = -10$	32. $a = 0$
33. <i>w</i> = 28	34. $x = 5$	35. $x = -1$	36. $r = 0$
37. $x = -4$	38. $x = \frac{2}{3}$	39. $x = \frac{1}{2}$	40. $r = -7$
41. $x = -\frac{7}{6}$	42. $x = 5$	43. <i>q</i> = 1	44. <i>r</i> = 4
45. $x = -5$	46. $x = 12$	47. $x = -10$	48. $r = \frac{1}{2}$
49. $x = -\frac{35}{3}$	50. $x = -\frac{7}{3}$	51. $t = \frac{65}{2}$	
52. $a = \frac{d-c}{b}$	53. $a = d + b$	54. $a = \frac{b}{cd}$	

Extra Work Space