Section 3.1 - One and Two Step Equations

This booklet belongs to: \qquad Block: \qquad
So, it begins....

- When we think algebra, what comes to mind?
- Headaches, moans \& groans, anxiety...
- Don't get yourself too riled up. Algebra is just the logical manipulation of an equation.
- That's where we start. With an equation.
- In order to be considered an equation you need a statement of inequality.

Either: $=<>\leq \geq$

- Whenever you have one of these in a statement it makes it an equation
- One side maintains equality with the other

In other words:
BALANCE
Whatever we do from this point on in an equation, we have to use logical rules in order to maintain that balance, that equality.

Addition and Subtraction

> It's called the ADDITION PRINCIPLE (ADDING TO MAKE 0)
Consider this,

$$
3=3 \quad \text { we have BALANCE }
$$

$>$ So, if we ADD something to one side we have to add it to both:

$$
3+2=3+2
$$

* We use this concept to help eliminate information from one side of an equation
* This in turns adds it to the other side

Example 1: $\quad r-4=7$

On the left we have an unknown. We need to get that unknown by itself on one side of the equals sign.

How do we do that?

* Well we have -4 , in order to eliminate it, we need it to be 0
* So, what do we add to -4 to make it 0 , we need to add +4

Solution 1:

And now, since $\quad-4+4=0, \quad$ we get $r+0$ on the left, which is r
So, after the elimination we get: $\quad r=11$ and we have solved for the unknown
$>$ Now the previous example saw us subtracting from the unknown so we had to add a positive to both sides.
\rightarrow When we add with the unknown, we have to add a negative (subtract) from both sides.

Example 2:

$q+5=15$
$q+5-5=15-5$
$q=10$

Added a negative to both sides, in other words:

Subtracted

Example 3:

$$
\begin{gathered}
r-4=7 \\
r-4+4=7+4 \\
r=11
\end{gathered}
$$

$$
\begin{gathered}
t+5=2 \\
t+5-5=2-5 \\
t=-3
\end{gathered}
$$

Example 4:

$$
\begin{gathered}
q-8=10 \\
q-8+8=10+8 \\
q=18 \\
a-6=-13 \\
a-6+6=-13+6 \\
a=-7
\end{gathered}
$$

$$
\begin{gathered}
x+4=-6 \\
x+4-4=-6-4 \\
x=-10 \\
b+8=-2 \\
b+8-8=-2-8 \\
b=-10
\end{gathered}
$$

Multiplication and Division

It's called the MULTIPLICATION PRINCIPLE (Multiplying to get 1)
> Multiplication and Division are inverses of one another
> Much like adding a negative is the same as subtraction
> Multiplying a fraction is the same as dividing
Now for multiplication and division the number we want isn't 0 , it's 1

- When we are multiplying with the variable we have to divide to end up with 1

Example 5:

$$
3 x=12
$$

- I don't want $3 x$, I want $1 x$, so I'll have to divide by $\mathbf{3}$ (or multiply by $\frac{\mathbf{1}}{\mathbf{3}}$)

$$
\frac{3 x}{3}=1 x
$$

But don't forget the whole balance thing. We need to divide both sides

$$
\frac{3 x}{3}=\frac{12}{3}, \quad 1 x=4 \text { or } x=4
$$

$>$ When we multiply with the variable, we do the inverse, division
$>$ Then, if we divide with the variable, we do the inverse, multiplication
Consider this,

$$
\frac{1}{2} \cdot 2=1
$$

- If you multiply a fraction by its denominator the cancel one another out, because the top and bottom divide to give you 1

$$
\frac{1}{2} \cdot 2=\frac{1 \cdot 2}{2}=\frac{2}{2}=1
$$

So,

$$
\frac{t}{5}=10
$$

- Since we are dividing with the variable, we have to multiply

$$
\frac{t}{5}=10, \quad 5 \cdot \frac{t}{5}=10 \cdot 5, \quad \frac{5 t}{5}=50, \quad t=50
$$

Multiply both sides by 5

Divide the left out

Example 6:

$$
\begin{aligned}
5 x & =10 \\
\frac{5 x}{5} & =\frac{10}{5} \\
x & =2
\end{aligned}
$$

$$
\begin{gathered}
-3 r=27 \\
\frac{-3 r}{-3}=\frac{27}{-3} \\
r=-9
\end{gathered}
$$

Example 7:

$4 a=3$	$8 n=2$
$\frac{4 a}{4}=\frac{3}{4}$	$\frac{8 n}{8}=\frac{2}{8}$
$a=\frac{3}{4}$	$n=\frac{1}{4}$
$\frac{q}{5}=2$	$\frac{d}{-4}=-8$
$5 \cdot \frac{q}{5}=2 \cdot 5$	$-4 \cdot \frac{d}{-4}=-8 \cdot-4$
$q=10$	$d=32$
$\frac{b}{7}=2$	$\frac{v}{4}=-12$
$7 \cdot \frac{b}{7}=2 \cdot 7$	$4 \cdot \frac{v}{4}=-12 \cdot 4$
$b=14$	$v=-48$

$>$ These are all $\mathbf{1}-$ Step equations
> They take 1 step to get your answer
> Addition, Subtraction, Multiplication, and Division
Next, we will see examples that require $\mathbf{2}$ or more Steps

Two Steps

If you are multiplying with a constant with a variable and adding or subtracting a number to it.
$>$ We need 2 Steps

Example 8:

$$
2 x+5=11
$$

* First get rid of the number that is being added or subtract, leaving a constant-variable product

$$
2 x+5-5=11-5
$$

* The 5's cancel, leave us with:

$$
2 x=6
$$

* Then divide the $\mathbf{2}$, on both sides, to isolate the variable and solve

$$
\frac{2 x}{2}=\frac{6}{2} \quad \rightarrow \quad x=3
$$

Example 9:

$$
\begin{aligned}
& \begin{array}{l|l}
3 q-8=10 & 5 x+4=-6
\end{array} \\
& 3 q-8+8=10+8 \\
& 3 q=18 \\
& \frac{3 q}{3}=\frac{18}{3} \quad \rightarrow \quad q=6 \\
& \begin{array}{c}
3 a-6=-13 \\
3 a-6+6=-13+6 \\
3 a=-7 \\
\frac{3 a}{3}=\frac{-7}{3} \rightarrow \quad a=-\frac{7}{3}
\end{array} \\
& 11 b+8=-2 \\
& 11 b+8-8=-2-8 \\
& 11 b=-10 \\
& \frac{11 b}{11}=\frac{-10}{11} \rightarrow b=-\frac{10}{11}
\end{aligned}
$$

If you have one fraction multiplying with a variable?
$>$ We need 2 Steps

Example 10:

$$
\frac{2}{3} x=6
$$

* First Multiply by the Denominator on both sides

$$
3 \cdot \frac{2}{3} x=6 \cdot 3
$$

* The 3's cancel on the left

$$
2 x=18
$$

* Then Divide by the Numerator on both sides

$$
\frac{2 x}{2}=\frac{18}{2}
$$

* The 2's cancel out on the left

$$
x=9
$$

Example 11:
$\frac{4}{5} x=4 \quad \rightarrow \quad 5 \cdot \frac{4}{5} x=4 \cdot 5 \quad \rightarrow \quad 4 x=20 \quad \rightarrow \quad \frac{4 x}{4}=\frac{20}{4} \quad \rightarrow \quad x=5$

- These can be done in 1 step by multiplying by the reciprocal.
- It only works in when you have 1 fraction, a variable and the answer
$\frac{2}{3} x=8 \quad \rightarrow \quad \frac{3}{2} \cdot \frac{2}{3} x=8 \cdot \frac{3}{2} \quad \rightarrow \quad x=\frac{24}{2} \quad \rightarrow \quad x=12$
- Algebra is much than just solving for the unknown, at its center, it is the study and understanding of how to manipulate an equation.
- How to free-up a piece of information.
- Your experiences in math, and physics and science in particular, you will experience scenarios where you need to solve for an unknown piece of information. That is algebra.

Example 12: Solve for a in terms of b, c, and $d . \quad a b+c=d$
Solution 12: What this means is that we need $\boldsymbol{a}=$
Step 1: \quad Subtract c from both sides

$$
a b+c-\boldsymbol{c}=d-\boldsymbol{c} \quad \rightarrow \quad \boldsymbol{a} \boldsymbol{b}=\boldsymbol{d}-\boldsymbol{c}
$$

Step 2:
Divided both sides by b
$a b=d-c \quad \rightarrow \quad \frac{a \not b}{\not b}=\frac{d-c}{b}$
Step 3: \quad Write your solution as $a=$ $a=\frac{d-c}{b}$

Example 13: Here is a classic physics equation: $F=m a$ (Force equals mass times acceleration). Solve for mass in terms of Force and acceleration.

Solution 13: So, we want m alone.

Example 14: Solve for $b . \quad a-b=c$
Solution 14: It's important to remember that we need b alone, not $-b$. There are a number of ways to tackle this, but here is my example.

Step 1: \quad Subtract a from both sides

$$
a-b-\boldsymbol{a}=c-\boldsymbol{a} \quad \rightarrow \quad-\boldsymbol{b}=\boldsymbol{c}-\boldsymbol{a}
$$

Step 2: \quad Multiply every term by (-1)

$$
(-1)(-b)=(-1) c-(-1) a \quad \rightarrow \quad b=-c+a
$$

Step 3: \quad Write your solution as $b=$

$$
b=-c+a \quad \text { or } \quad b=a-c
$$

Section 3.1 - Practice Questions

EMERGING LEVEL QUESTIONS

Use the Addition and Subtraction Principle. ISOLATE THE VARIABLE, show steps.

1.	$w+4=7$	2.	$x+16=-4$	3.	$t-12=-4$
4.	$t+9=-3$		$k-6=-8$	6.	$w-3=-8$
7.	$z+2=5$	8.	$8=j+7$	9.	$r+5=12$
10.	$12=l-4$	11.	$15=r+12$	12.	$x+23=-7$
13.	$j+7=-4$	14.	$23+f=-17$	15.	$j+5=-11$

Use the Multiplication and Division Principle. ISOLATE THE VARIABLE, show steps.

16.	$3 x=12$	17.	$2 x=24$	18.	$4 t=-13$
19.	$-3 t=-6$	20.	$-4 r=12$	21.	$-12 m=156$
22.	$3 t=17$	23.	$-x=4$	24.	$7 h=2$
25.	$\frac{Z}{7}=9$		$\frac{k}{6}=-2$	27.	$\frac{t}{8}=4$
28.	$\frac{r}{3}=-3$	29.	$-\frac{j}{4}=-6$	30.	$\frac{r}{6}=35$
31.	$-\frac{t}{2}=5$		$\frac{a}{7}=0$	33.	$-\frac{w}{7}=-4$

Use two-step processes to solve the following

$3 x-5=10$	35.	$-2 x+5=7$	$-4 r-4=-4$

PROFICIENT LEVEL QUESTIONS

EXTENDING LEVEL QUESTIONS

In each case, solve for the variable a
52. $a b+c=d$
53. $-a+b=-d$
54. $\frac{b}{a}=c d$

Answer Key - Section 3.1

1. $w=3$	2. $x=-20$	3. $t=8$	4. $t=-12$
5. $k=-2$	6. $w=-5$	7. $z=3$	8. $j=1$
9. $r=7$	10. $l=16$	11. $r=3$	12. $x=-30$
13. $j=-11$	14. $f=-40$	15. $j=-16$	16. $x=4$
17. $x=12$	18. $t=-\frac{13}{4}$	19. $t=2$	20. $r=-3$
21. $m=-13$	22. $t=\frac{17}{3}$	23. $x=-4$	24. $h=\frac{2}{7}$
25. $z=63$	26. $k=-12$	27. $t=32$	28. $r=-9$
29. $j=24$	30. $r=210$	31. $t=-10$	32. $a=0$
33. $w=28$	34. $x=5$	35. $x=-1$	36. $r=0$
37. $x=-4$	38. $x=\frac{2}{3}$	39. $x=\frac{1}{2}$	40. $r=-7$
41. $x=-\frac{7}{6}$	42. $x=5$	43. $q=1$	44. $r=4$
45. $x=-5$	46. $x=12$	47. $x=-10$	48. $r=\frac{1}{2}$
49. $x=-\frac{35}{3}$	50. $x=-\frac{7}{3}$	51. $t=\frac{65}{2}$	
52. $a=\frac{d-c}{b}$	53. $a=d+b$	54. $a=\frac{b}{c d}$	

Extra Work Space

