Section 2.6 – Practice Problems

1. Suppose y = f(x) has the point (a, b). Write (a, b) with the transformations described.

a) $y = f(x - 1) + 1$	b) $y = f(1-x) \rightarrow \gamma = f[-1(x-t)]$
$(a,b) \rightarrow (a+1,b+1)$	$(a,b) \rightarrow (-a,b) \rightarrow (-a+1,b)$
c) $y = -f(-x)$	d) $y = f(x) + 1$
$(a,b) \rightarrow (-a,-b)$	$(a,b) \rightarrow (a,b+1)$
e) $y = f(-x)$	f) $y = -f(x)$
$(a,b) \rightarrow (-a,b)$	$(a,b) \rightarrow (a,-b)$
g) $y = f(x + 1)$	h) $y = f^{-1}(x)$
(a,6)-> (a-1,b)	$(a,b) \rightarrow (b,a)$
i) $y = -f^{-1}(x)$	j) $y = f^{-1}(x) + 1$
$(a,b) \rightarrow (b,a) \rightarrow (b,-a)$	$(a,b) \rightarrow (b,a) \rightarrow (b,att)$
k) $y = f^{-1}(x - 1)$	$ y = f^{-1}(-x) + 1$
$(a,b) \rightarrow (b,a) \rightarrow (b+1,a)$	$(a,b) \rightarrow (b,a) \rightarrow (-b,a+1)$
m) $y = f^{-1}(x) + 1$	n) $y = -f^{-1}(-x) + 1$
(a,b) -> (b,a) -> (b,a+1)	$(a,b) \rightarrow (b,a) \rightarrow (-b,-a)$
	-> (-b,-a+1)

Adrian Herlaar, School District 61

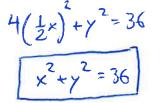
2. If points (4, -2) and (a, b) are on the graph of y = f(x), what points must be on the following graphs?

a) $y = f(x-1) - 3$	b) $y = -f(-x) + 1$
$(4,-2) \rightarrow (5,-5)$	$(4,-2) \rightarrow (-4,2) \rightarrow (-4,3)$
$(a,b) \rightarrow (a+1,b-3)$	$(a,b) \rightarrow (-a,-b) \rightarrow (-a,-b+1)$
c) $y = -f(x+2) - 1$	d) $y = f(2x) $
$(4,-2) \rightarrow (2,2) \rightarrow (2,1)$	$(4,-2) \rightarrow (4,2) \rightarrow (2,2)$
$(a,b) \rightarrow (a-2,-b) \rightarrow (a-2,-b-1)$	$(a,b) \rightarrow (a, b) \rightarrow (\frac{1}{2}a, b)$
e) $y = \frac{1}{2}f(x-1) + 4$	f) $y = - f(x-2) $
$(4, -2) \rightarrow (5, -1) \rightarrow (5, 3)$	$(4,-2) \rightarrow (6,2) \rightarrow (6,-2)$
$(a,b) \rightarrow (a+1,\frac{1}{2}b) \rightarrow (a+1,\frac{1}{2}b+4)$	$(a,b) \rightarrow (a+2,-lbl)$
g) $y = f\left(-\frac{1}{2}x\right) + 1$	h) $y = -f(1-x) $
$(4,-2) \rightarrow (-8,-2) \rightarrow (-8,-1)$	$(4,-2) \rightarrow (-4,2) \rightarrow (-3,2)$
$(a,b) \rightarrow (-2a,b+1)$	$(a,b) \rightarrow (-a,-b) \rightarrow (-a+1,-b)$

6

Adrian Herlaar, School District 61

GÂ.


i)
$$y = f^{-1}(x) + 2$$

 $(4, -2) \rightarrow (-2, 4) \rightarrow (-2, 6)$
 $(a, b) \rightarrow (b, a) \rightarrow (b, a+2)$
i) $y = f^{-1}(x+1)$
 $(4, -2) \rightarrow (-2, 4) \rightarrow (-3, 4)$
 $(a, b) \rightarrow (b, a) \rightarrow (b, -1, a)$

3. If $f(x) = x^2 - 1$, determine the equation after each of the following transformations.

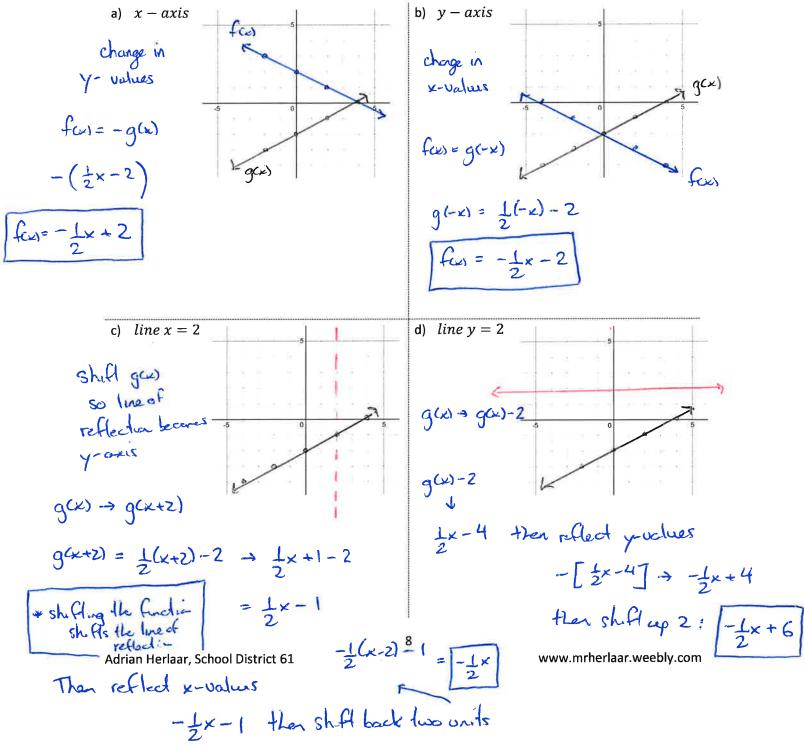
a)
$$y = f(x+2)$$

 $y = (x+2)^2 - 1$
b) $y = f(\frac{1}{2}x) + 1$
 $y = (\frac{1}{2}x)^2 - 1 + 1$
 $y = (\frac{1}{2}x)^2 - 1 + 1$
 $y = (\frac{1}{2}x)^2 - 1 + 1$
 $y = \frac{1}{2}x^2$
d) $y = 2f(1-x) + 3$
 $y = 2[(1-x)^2 - 1] + 3$
 $y = 2[(1-x)^2 - 1] + 3$
 $y = 2((-x)^2 + 1)$
e) Expand vertically by a factor of 3
 $f(x) \rightarrow 3f(x)$
 $y = x^2 - 1 \rightarrow 3(x^2 - 1)$
4. If $4x^2 + y^2 = 36$, determine the equation after each of the following transformations (these are not intuitive, is it in the form $y = f(x)$?

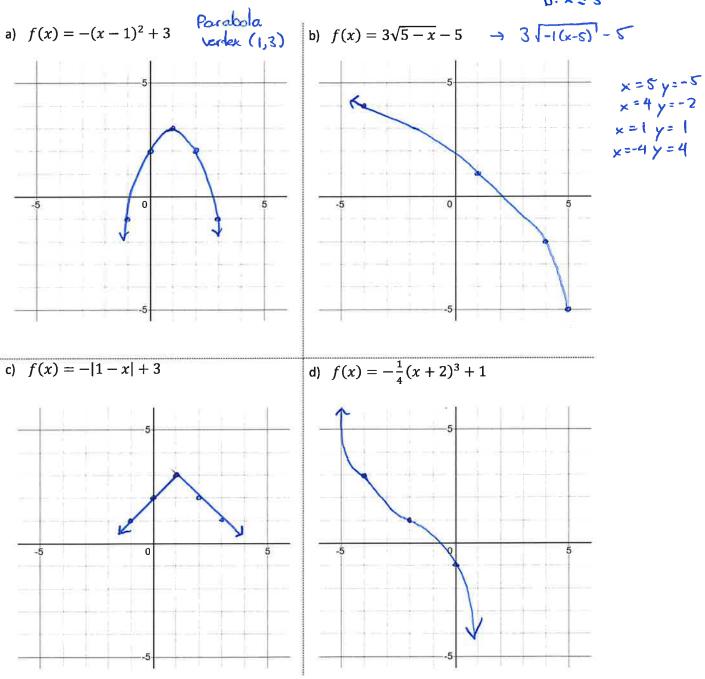
7

a) Expand horizontally by a factor of 2

Adrian Herlaar, School District 61


b) Compress vertically by a factor of $\frac{1}{3}$ $4x^2 + \left(\frac{y}{3}\right)^2 = \frac{36}{3} \rightarrow \frac{4x^2 + 9y^2}{4x^2 + 9y^2} = \frac{36}{36}$

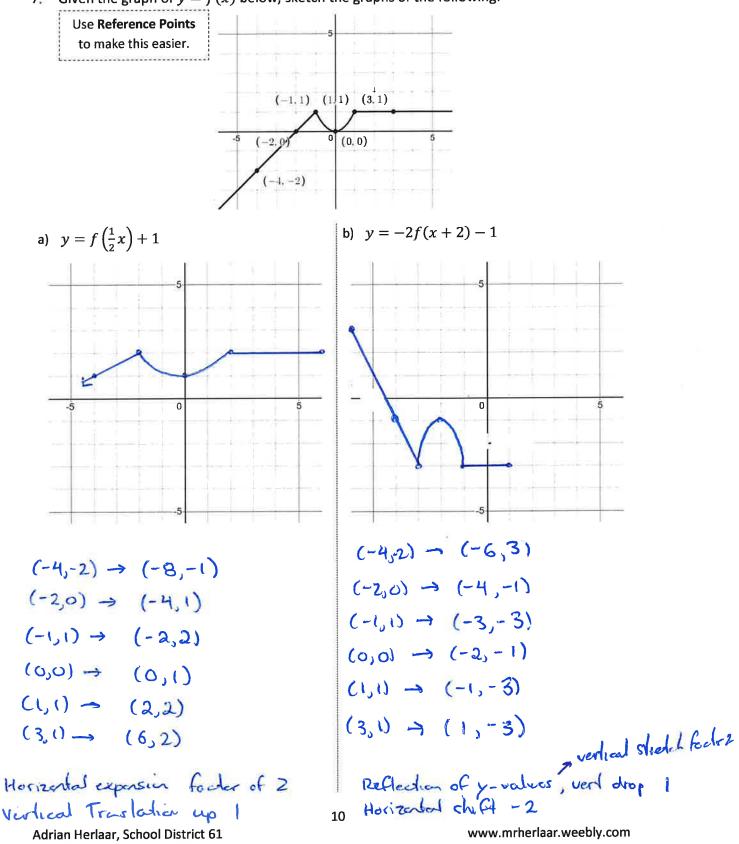
would be y = 4 few so 3/4

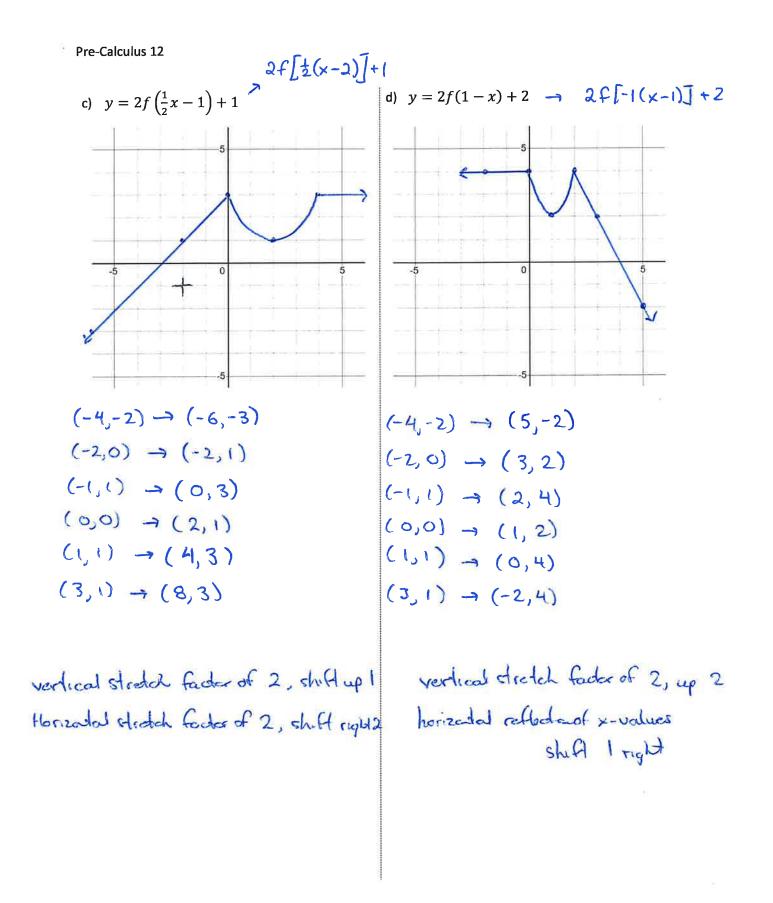

c) Compress horizontally by a factor of $\frac{1}{2}$ and expand vertically by a factor of $\frac{4}{3}$

 $4(2x)^{2} + (\frac{3}{4}y)^{2} = 36 \rightarrow \frac{16}{16x^{2}} + \frac{9}{16y^{2}} = 36 \rightarrow 256x^{2} + 9y^{2} = 576$

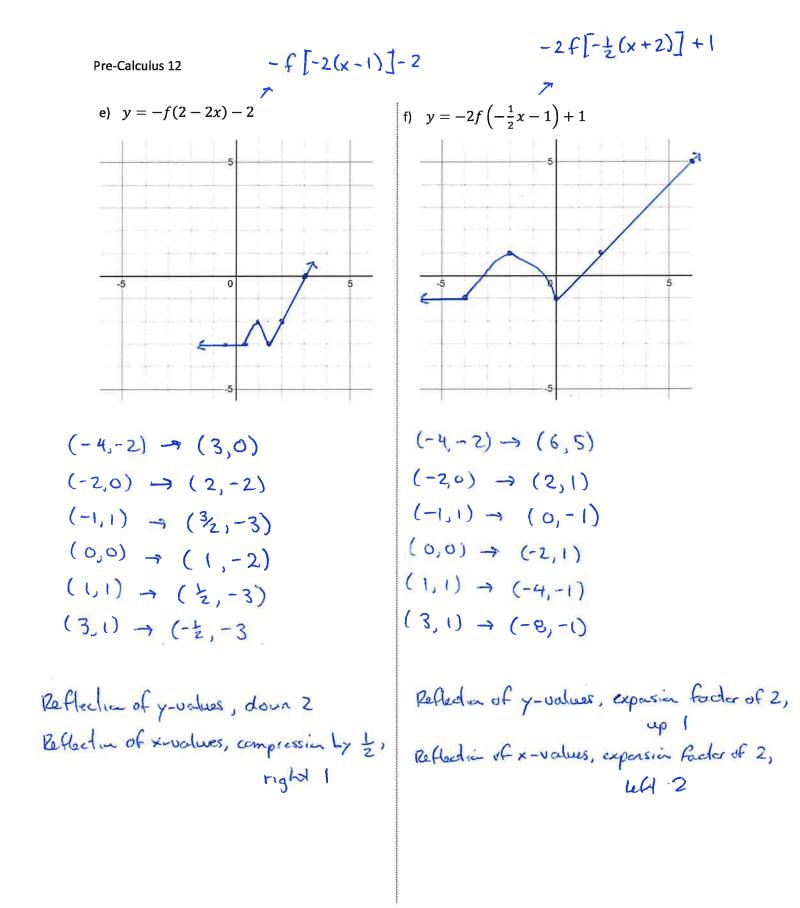
5. Write an expression for f(x) obtained by reflecting the graph $g(x) = \frac{1}{2}x - 2$, about the: Drawings may help.

6. Graph the following functions without using Desmos, graph the basic form first, then graph the transformation and erase the original.




Adrian Herlaar, School District 61

www.mrherlaar.weebly.com


9

7. Given the graph of y = f(x) below, sketch the graphs of the following:

11

Adrian Herlaar, School District 61

www.mrherlaar.weebly.com

12

Answer Key for Number 1

1.		
a) $(a+1,b+1)$	b) $(1-a,b)$	c) $(-a, -b)$
d) <i>a</i> , <i>b</i> + 1)	e) (- <i>a</i> , <i>b</i>)	f) $(a, -b)$
g) a - 1, b)	h) (b, a)	i) $(b, -a)$
j) (b, a + 1)	k) $(b+1,a)$	I) $(-b, a+1)$
m) $(b, 1-a)$	n) $(-b, 1-a)$	

See Website for Detailed Answer Key of the Remainder of the Questions