Section 2.6 – Combined Transformations

• We can summarize the transformation steps as follows:

$$y = f(x)$$
 versus $y = af[b(x \pm c)] + d$

Recall:

Transforming Vertically

- \checkmark a > 1 is a vertical expansion by a *factor of a*
- \checkmark **0** < *a* < **1** is a vertical compression by a *factor of a*
- ✓ a < 0 (negative), is a reflection in the x axis (the y values change sign)
- $\checkmark + d$ shifts up d units
- $\checkmark -d$ shifts down d units

Transforming Horizontally

- \checkmark **b** > 1 is a horizontal compression by a factor of $\frac{1}{b}$
- \checkmark 0 < b < 1 is a horizontal expansion by a factor of $\frac{1}{b}$, and since b is a fraction, $\frac{1}{b} = b$
- ✓ b < 0 (negative), is a reflection in the y axis (the x values change sign)
- \checkmark + c shifts left c units (c > 0)
- $\checkmark -c$ shifts right c units (c > 0)

REFLECTIONS/COMPRESIONS/EXPANSIONS ALWAYS COME FIRST – THEN ANY TRANSLATIONS

Example 1: y = f(x) transformed to y = -2f[3(x+5)] - 7

If (6, -3) is on f(x) how does the point transform?

Solution 1:

VerticallySo- Refection in the x - axis (multiply y - values by - 1)(6, -3)- Expansion by a factor of 2 (multiply y - value by 2)Translation down 7 (subtract 7 from y - value)Transforms to:Horizontally($6\left(\frac{1}{3}\right) - 5, -3(-1)(2) - 7$)(2 - 5, 6 - 7)- Compression by a factor of $\frac{1}{3}$ (multiply x - value by $\frac{1}{3}$)(2 - 5, 6 - 7)- Translation 5 left (subtract 5 from the x - value)(-3, -1)

• It is necessary to factor out the *b* term from any included horizontal translation

Solving Combined Operations

There are two methods of solving combined equations:

- 1. A step-by-step approach
- 2. A one-shot calculation with the corresponding coordinates

Example 3: If the point (3, 2) is on the graph y = f(x), what point is on y = -4f(6 - 3x) + 1?

Solution 3:

First re-write the new function in the usual form with the *b* term factored out

$$y = -4f(6 - 3x) + 1 \rightarrow y = -4f[-3(x - 2)] + 1$$
Method 1:

• -4 reflects points about the $x - axis$ with a vertical expansion by a factor of 4 so, $(3, 2) \rightarrow (3, -8)$

• -3 reflects points about the $y - axis$ with a horizontal compression by a factor of $\frac{1}{3}$ so, $(3, -8) \rightarrow (-1, -8)$

• $x - 2$ shifts the point two units horizontally to the right, so $(-1, -8) \rightarrow (1, -8)$

• $+1$ shifts the point one unit vertically up, so $(1, -8) \rightarrow (1, -7)$

• So, the transformation is: $(3, 2) \rightarrow (1, -7)$

• So, the transformation is: $(3, 2) \rightarrow (1, -7)$

• $y = -4f[-3(x - 2)] + 1$

Method 2

If $y = f(x)$ has a point (m, n) , then
 $y = af[b(x - c)] + d$ has a point:
 $\left(\frac{m}{b} + c, an + d\right)$
 $a = -4, b = -3, c = 2, d = 1$

So,
 $\left(\frac{3}{-3} + 2, (-4)(2) + 1\right)$

(1, -7)

Example 4: If the point (-1, 2) is on the graph $y = f^{-1}(x)$, what point is on y = -3f(8 + 2x) - 1?

Solution 4:

First re-write the new function in the usual form with the *b* term factored out:

$$y = -3f(8+2x) - 1 \rightarrow y = -3f[2(x+4)] - 1$$

Method 1:Method 2• If
$$(-1, 2)$$
 is on $y = f^{-1}(x)$, then $(2, -1)$ is on $f(x)$ $y = f^{-1}(x)$ has a point (n, m) , then• -3 reflects points about the $x - axis$ with a vertical expansion by a factor of 3 so, $(2, -1) \rightarrow (2, 3)$ $y = af[b(x - c)] + d$ has a point:• 2 is a horizontal compression by a factor of $\frac{1}{2}$ so,
 $(2, 3) \rightarrow (1, 3)$ $a = -3, b = 2, c = -4, d = -1$ • $x + 4$ shifts the point four units horizontally to the left, so $(1, 3) \rightarrow (-3, 3)$ $(\frac{2}{2} + (-4), (-3)(-1) - 1)$ • -1 shifts the point one unit vertically up, so
 $(-3, 3) \rightarrow (-3, 2)$ $(-3, 2)$

Transforming Graphs

- Using a step-by-step approach for graph transformations can be tedious
- It is helpful to pick a number of reference points, transforming them, and re-drawing the graph in its entirety.
- See the example below

Example 4: Given the graph y = f(x) below, graph y = -2f[-2(x+1)] + 1

Solution 4:

Remember:

If y = f(x) has point (m, n)

y = af[b(x - c)] + d has the point:

$$\left(\frac{m}{b} + c, an + d\right)$$
$$a = -2, b = -2, c = -1, d = 1$$

Use the reference points to calculate the transformations:

(-1,0), (0,1), (1,1), (2,0)

$(-1,0) \rightarrow \left(\frac{-1}{-2} - 1, (-2)(0) + 1\right) \rightarrow \left(-\frac{1}{2}, 1\right)$	$(0,1) \rightarrow \left(\frac{0}{-2} - 1, (-2)(1) + 1\right) \rightarrow (-1,-1)$
$(1,1) \rightarrow \left(\frac{1}{-2} - 1, (-2)(1) + 1\right) \rightarrow \left(-\frac{3}{2}, -1\right)$	$(2,0) \rightarrow \left(\frac{2}{-2} - 1, (-2)(0) + 1\right) \rightarrow (-2,1)$

Section 2.6 – Practice Problems

1. Suppose y = f(x) has the point (a, b). Write (a, b) with the transformations described.

a) $y = f(x - 1) + 1$	b) $y = f(1 - x)$
c) $y = -f(-x)$	d) $y = f(x) + 1$
e) $y = f(-x)$	f) $y = -f(x)$
g) $y = f(x+1)$	h) $y = f^{-1}(x)$
i) $y = -f^{-1}(x)$	j) $y = f^{-1}(x) + 1$
k) $y = f^{-1}(x - 1)$	1) $y = f^{-1}(-x) + 1$
m) $y = f^{-1}(x) + 1$	n) $y = -f^{-1}(-x) + 1$

2. If points (4, -2) and (a, b) are on the graph of y = f(x), what points must be on the following graphs?

a)
$$y = f(x - 1) - 3$$

b) $y = -f(-x) + 1$
c) $y = -f(x + 2) - 1$
d) $y = |f(2x)|$
e) $y = \frac{1}{2}f(x - 1) + 4$
f) $y = -|f(x - 2)|$
g) $y = f\left(-\frac{1}{2}x\right) + 1$
h) $y = -f(1 - x)$

i)
$$y = f^{-1}(x) + 2$$

j) $y = f^{-1}(x+1)$

3. If $f(x) = x^2 - 1$, determine the equation after each of the following transformations.

a) $y = f(x + 2)$	b) $y = f(\frac{1}{2}x) + 1$
c) $y = -f(x - 1) + 2$	d) $y = 2f(1-x) + 3$
e) Expand vertically by a factor of 3	f) Expand horizontally by a factor of 3

4. If $4x^2 + y^2 = 36$, determine the equation after each of the following transformations (these are not intuitive, is it in the form y = f(x)?

a) Expand horizontally by a factor of 2
b) Compress vertically by a factor of
$$\frac{1}{3}$$

Pre-Calculus 12

c) Compress horizontally by a factor of $\frac{1}{2}$ and expand vertically by a factor of $\frac{4}{3}$

5. Write an expression for f(x) obtained by reflecting the graph $g(x) = \frac{1}{2}x - 2$, about the: Drawings may help.

6. Graph the following functions without using Desmos, graph the basic form first, then graph the transformation and erase the original.

7. Given the graph of y = f(x) below, sketch the graphs of the following:

b) y = -2f(x+2) - 1

c)
$$y = 2f\left(\frac{1}{2}x - 1\right) + 1$$

d) y = 2f(1-x) + 2

e)
$$y = -f(2-2x) - 2$$

Answer Key for Number 1

1	
т	•

a) $(a+1, b+1)$	b) $(1-a,b)$	c) $(-a, -b)$
d) <i>a</i> , <i>b</i> + 1)	e) (- <i>a</i> , <i>b</i>)	f) $(a, -b)$
g) $a - 1, b$	h) (<i>b</i> , <i>a</i>)	i) $(b, -a)$
j) (b, a + 1)	k) $(b+1,a)$	1) $(-b, a+1)$
m) $(b, a + 1)$	n) $(-b, 1-a)$	

See Website for Detailed Answer Key of the Remainder of the Questions

Extra Work Space