Section 2.6 - Combined Transformations

- We can summarize the transformation steps as follows:

$$
y=f(x) \text { versus } y=a f[b(x \pm c)]+d
$$

Recall:

Transforming Vertically

$\checkmark \quad a>1$ is a vertical expansion by a factor of a
$\checkmark \quad 0<a<1$ is a vertical compression by a factor of a
$\checkmark \boldsymbol{a}<\mathbf{0}$ (negative), is a reflection in the $\boldsymbol{x}-\boldsymbol{a x i s}$ (the $y-$ values change sign)
$\checkmark+d$ shifts up d units
$\checkmark-d$ shifts down d units

Transforming Horizontally

$\checkmark \quad b>1$ is a horizontal compression by a factor of $\frac{1}{b}$
$\checkmark \quad 0<b<1$ is a horizontal expansion by a factor of $\frac{1}{b}$, and since b is a fraction, $\frac{1}{b}=b$
$\checkmark \boldsymbol{b}<\mathbf{0}$ (negative), is a reflection in the \boldsymbol{y}-axis (the $x-$ values change sign)
$\checkmark \quad+c$ shifts left c units $(c>0)$
$\checkmark-c$ shifts right c units $(c>0)$
REFLECTIONS/COMPRESIONS/EXPANSIONS ALWAYS COME FIRST - THEN ANY TRANSLATIONS
Example 1: $\quad y=f(x)$ transformed to $y=-2 f[3(x+5)]-7$
If $(6,-3)$ is on $f(x)$ how does the point transform?

Solution 1:

Vertically

- Refection in the x-axis (multiply y - values by -1)
- Expansion by a factor of 2 (multiply y - value by 2)
- Translation down 7 (subtract 7 from y - value)

Horizontally

- Compression by a factor of $\frac{1}{3}$ (multiply $x-$ value by $\frac{1}{3}$)
- Translation 5 left (subtract 5 from the x - value)

So

$$
(6,-3)
$$

Transforms to:

$$
\begin{gathered}
\left(6\left(\frac{1}{3}\right)-5,-3(-1)(2)-7\right) \\
(2-5,6-7) \\
(-3,-1)
\end{gathered}
$$

- It is necessary to factor out the b term from any included horizontal translation

Example 2: $\quad y=f(2 x-6)$

Not allowed - factor out the 2
Solution 2:
$y=f(2 x-6) \quad \rightarrow \quad y=f[2(x-3)]$

- Horizontal Compression by a factor of $\frac{1}{2}$
- Then 3 units to the right

Solving Combined Operations

There are two methods of solving combined equations:

1. A step-by-step approach
2. A one-shot calculation with the corresponding coordinates

Example 3: If the point $(3,2)$ is on the graph $y=f(x)$, what point is on $y=-4 f(6-3 x)+1$?

Solution 3:

First re-write the new function in the usual form with the b term factored out

$$
y=-4 f(6-3 x)+1 \quad \rightarrow \quad y=-4 f[-3(x-2)]+1
$$

Method 1:

- $\quad-4$ reflects points about the x-axis with a vertical expansion by a factor of 4 so, $(3,2) \rightarrow(3,-8)$
- $\quad-3$ reflects points about the y-axis with a horizontal compression by a factor of $\frac{1}{3}$ so, $(3,-8) \rightarrow(-1,-8)$
- $\quad x-2$ shifts the point two units horizontally to the right, so $(-1,-8) \rightarrow(1,-8)$
- $\quad+1$ shifts the point one unit vertically up, so $(1,-8) \rightarrow(1,-7)$
- So, the transformation is:

$$
(3,2) \quad \rightarrow \quad(1,-7)
$$

Method 2

If $y=f(x)$ has a point (m, n), then
$y=a f[b(x-c)]+d$ has a point:

$$
\begin{gathered}
\left(\frac{m}{b}+c, a n+d\right) \\
a=-4, b=-3, c=2, d=1
\end{gathered}
$$

So,

$$
\left(\frac{3}{-3}+2,(-4)(2)+1\right)
$$

$$
(1,-7)
$$

Example 4: If the point $(-1,2)$ is on the graph $y=f^{-1}(x)$, what point is on $y=-3 f(8+2 x)-1$?

Solution 4:

First re-write the new function in the usual form with the b term factored out:

$$
y=-3 f(8+2 x)-1 \quad \rightarrow \quad y=-3 f[2(x+4)]-1
$$

Method 1:

- If $(-1,2)$ is on $y=f^{-1}(x)$, then $(2,-1)$ is on $f(x)$
- -3 reflects points about the x-axis with a vertical expansion by a factor of 3 so, $(2,-1) \rightarrow(2,3)$
- 2 is a horizontal compression by a factor of $\frac{1}{2}$ so, $(2,3) \rightarrow(1,3)$
- $x+4$ shifts the point four units horizontally to the left, so $(1,3) \rightarrow(-3,3)$
- $\quad-1$ shifts the point one unit vertically up, so $(-3,3) \rightarrow(-3,2)$
- So, the transformation is:

$$
(-1,2) \quad \rightarrow \quad(-3,2)
$$

Transforming Graphs

- Using a step-by-step approach for graph transformations can be tedious
- It is helpful to pick a number of reference points, transforming them, and re-drawing the graph in its entirety.
- See the example below

Example 4: \quad Given the graph $y=f(x)$ below, graph $y=-2 f[-2(x+1)]+1$

Solution 4:

Remember:

If $y=f(x)$ has point (m, n)
$y=a f[b(x-c)]+d$ has the point:

Use the reference points to calculate the transformations:

$$
(-1,0),(0,1),(1,1),(2,0)
$$

| $(-1,0) \rightarrow\left(\frac{-1}{-2}-1,(-2)(0)+1\right) \rightarrow\left(-\frac{1}{2}, 1\right)$ | $(0,1) \rightarrow\left(\frac{0}{-2}-1,(-2)(1)+1\right) \rightarrow(-1,-1)$ |
| :--- | :--- | :--- | :--- |
| $(1,1) \rightarrow\left(\frac{1}{-2}-1,(-2)(1)+1\right) \rightarrow\left(-\frac{3}{2},-1\right)$ | $(2,0) \rightarrow\left(\frac{2}{-2}-1,(-2)(0)+1\right) \rightarrow(-2,1)$ |

Section 2.6 - Practice Problems

1. Suppose $y=f(x)$ has the point (a, b). Write (a, b) with the transformations described.
a) $y=f(x-1)+1$
b) $y=f(1-x)$
c) $y=-f(-x)$
d) $y=f(x)+1$
e) $y=f(-x)$
g) $y=f(x+1)$
f) $y=-f(x)$
h) $y=f^{-1}(x)$

i) $y=-f^{-1}(x)$	j) $y=f^{-1}(x)+1$
k) $y=f^{-1}(x-1)$	I) $y=f^{-1}(-x)+1$

m) $y=f^{-1}(x)+1$
n) $y=-f^{-1}(-x)+1$
2. If points $(4,-2)$ and (a, b) are on the graph of $y=f(x)$, what points must be on the following graphs?
a) $y=f(x-1)-3$
b) $y=-f(-x)+1$
c) $y=-f(x+2)-1$
d) $y=|f(2 x)|$
e) $y=\frac{1}{2} f(x-1)+4$
g) $y=f\left(-\frac{1}{2} x\right)+1$
h) $y=-f(1-x)$
www.mrherlaar.weebly.com
i) $y=f^{-1}(x)+2$
j) $y=f^{-1}(x+1)$
3. If $f(x)=x^{2}-1$, determine the equation after each of the following transformations.
a) $y=f(x+2)$
b) $y=f\left(\frac{1}{2} x\right)+1$
c) $y=-f(x-1)+2$
d) $y=2 f(1-x)+3$
e) Expand vertically by a factor of 3
f) Expand horizontally by a factor of 3
4. If $4 x^{2}+y^{2}=36$, determine the equation after each of the following transformations (these are not intuitive, is it in the form $y=f(x)$?
a) Expand horizontally by a factor of 2
b) Compress vertically by a factor of $\frac{1}{3}$

7
c) Compress horizontally by a factor of $\frac{1}{2}$ and expand vertically by a factor of $\frac{4}{3}$
5. Write an expression for $f(x)$ obtained by reflecting the graph $g(x)=\frac{1}{2} x-2$, about the: Drawings may help.
a) x-axis

b) y-axis

c) line $x=2$

d) line $y=2$

6. Graph the following functions without using Desmos, graph the basic form first, then graph the transformation and erase the original.

c) $f(x)=-|1-x|+3$

b) $f(x)=3 \sqrt{5-x}-5$

d) $f(x)=-\frac{1}{4}(x+2)^{3}+1$

7. Given the graph of $y=f(x)$ below, sketch the graphs of the following:

a) $y=f\left(\frac{1}{2} x\right)+1$

b) $y=-2 f(x+2)-1$

Pre-Calculus 12
c) $y=2 f\left(\frac{1}{2} x-1\right)+1$

d) $y=2 f(1-x)+2$

Pre-Calculus 12
e) $y=-f(2-2 x)-2$

f) $y=-2 f\left(-\frac{1}{2} x-1\right)+1$

Answer Key for Number 1

1.

a) $(a+1, b+1)$	b) $(1-a, b)$	c) $(-a,-b)$
d) $a, b+1)$	e) $(-a, b)$	f) $(a,-b)$
g) $a-1, b)$	h) (b, a)	i) $(b,-a)$
j) (b,a+1)	k) $(b+1, a)$	I) $(-b, a+1)$
m) $(b, a+1)$	n) $(-b, 1-a)$	

See Website for Detailed Answer Key of the Remainder of the Questions

Extra Work Space

