Section 2.5 – Radical Equations and Restrictions

This booklet belongs to:______Block: _____

Restrictions on the Domain (Allowable values for *x*)

- When we think about numbers that exist (Real Numbers), $\sqrt{x+2}$ has some restrictions, because...
- We can't have negatives under the square root symbol
- So the restriction we are looking at is: $x + 2 \ge 0 \rightarrow x \ge -2$

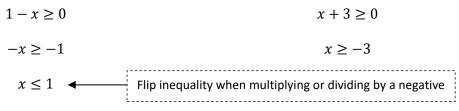
Example: Determine the restrictions on $\sqrt{2x - 3} = x - 3$

Solution: All that matters is that the radicand, $2x - 3 \ge 0$

 $2x - 3 \ge 0 \rightarrow 2x \ge 3 \rightarrow x \ge \frac{3}{2}$ So the restriction is: $x \ge \frac{3}{2}$

Example: Determine the restrictions on $\sqrt{3x + 4} - \sqrt{2x - 4} = 2$

Solution: Since we have two radicands, we need to **check both**


$3x + 4 \ge 0$	$2x-4 \ge 0$
$3x \ge -4$	$2x \ge 4$
$x \ge -\frac{4}{3}$	$x \ge 2$

Since the restrictions **starts in the negatives** but has **another value at 2**, we need to take the larger number as the start point.

So the restriction is: $x \ge 2$

Example: Determine the restrictions on $\sqrt{1-x} + \sqrt{x+3} = 4$

Solution: Since we have two radicands, we need to **check both**

Since the restrictions is greater than – 3 but also less than 1, we need to take the intersection point

So the restriction is: $-3 \le x \le 1$

Pre-Calculus Math 11

Solving Radical Equations

- The first step is getting rid of the radicals, this concept is used: If a = b then $a^2 = b^2$
- The only issue with squaring both sides is can end up in **extraneous solutions**, solutions that don't satisfy the original equation
- So when we get our solutions, we have to test their viability in the original equation

Example:Solve
$$\sqrt{x} + 1 = x - 1$$
Solution: $\sqrt{x+1} = x - 1$ $\sqrt{x+1} = x - 1$ Check: $(\sqrt{x+1})^2 = (x-1)^2$ Square both sidesFor $x = 0$: $\sqrt{0+1} = 0 - 1 \rightarrow 0 = -1$. (False) $x + 1 = (x-1)(x-1)$ ExpandFor $x = 3$: $\sqrt{3+1} = 3 - 1 \rightarrow 2 = 2$. (True) $x + 1 = x^2 - 2x + 1$ Simplify the expansionSo, $x = 0$ is extraneous, $x = 3$ is a solution $x = x^2 - 2x$ Subtract 1 from both sidesSo, $x = 0$ is extraneous, $x = 3$ is a solution $x^2 - 3x = 0$ Subtract x from both sides $x(x - 3) = 0$ Factor out the x $x = 0, 3$ Solve for x

Example: Solve $\sqrt{2x+5} - \sqrt{x-1} = 2$ $\sqrt{2x+5} = 2 + \sqrt{x-1}$ $(\sqrt{2x+5})^2 = (2 + \sqrt{x-1})^2$ [Square both sides] $2x + 5 = (2 + \sqrt{x-1})(2 + \sqrt{x-1})$ [Expand] $2x + 5 = 4 + 4\sqrt{x-1} + x - 1$ [Simplify the expansion] $x + 2 = 4\sqrt{x-1}$ [Subtract 3 and x from both sides] $(x + 2)^2 = (4\sqrt{x-1})^2$ [Square both sides again] $x^2 + 4x + 4 = 16(x - 1)$ [Expand and Simplify] $x^2 - 12x + 20 = 0$ [Factor and Solve for x] $(x - 2)(x - 10) = 10 \rightarrow x = 2, 10$

Solution: Convert to: $\sqrt{2x+5} = 2 + \sqrt{x-1}$

Check:
For
$$x = 2$$
: $\sqrt{2(2) + 5} - \sqrt{2 - 1} = 2 \rightarrow 3 - 1 = 2$
 $2 = 2 \ (True)$
For $x = 10$: $\sqrt{2(10) + 5} - \sqrt{10 - 1} = 2 \rightarrow 5 - 3 = 2$
 $2 = 2 \ (True)$
So, $x = 2 \ and \ x = 10$ are solutions

ĺ.

Section 2.5 – Practice Problems

Square the expression	
1. $\sqrt{x+2}$	2. $\sqrt{x} + 2$
3. $\sqrt{3x-5}$	4. $\sqrt{3x} - 5$
5. $\sqrt{1-4x}$	6. $1 - 4\sqrt{x}$
7. <i>x</i> – 3	8. $\sqrt{x} - \sqrt{3}$

Determine the restriction on the radical equation

9.
$$\sqrt{x+5} = 4$$
 10. $\sqrt{9-x} = 5$

Solve the radical equation

15. $\sqrt{2t-3} = 5$ 16. $\sqrt{3t+4} = -2$	
17. $\sqrt{1-3x} = -2$ 18. $2\sqrt{x-1} = x$	

19. $\sqrt{2x+3} - \sqrt{x+2} = 2$	20. $-\sqrt{x+3} = \sqrt{3x+5}$
21. $\sqrt{2x+1} = x-7$	22. $\sqrt{3x+10} + 5 = 2x$
23. $x + 3 = (\sqrt{x+1})(\sqrt{x+6})$	$24. \ \sqrt{y-8} + \sqrt{y} = 2$

Pre-Calculus Math 11

25. The maximum distance, d, in kilometers that a person can see from a height, h, in kilometers above the ground is $d = 111.7\sqrt{h}$. Find the height in meters that would allow a person to see 75 kilometers.

26. The formula $v = \sqrt{2gh}$ relates velocity, *V*, in meters per second of an object after *h* meters accelerated by gravity, *g*, in meters per second squared. If *g* is approximately $9.8m/s^2$, how far has an object fallen if its velocity is $30m/s^2$?

1. $x + 2$
2. $x + 4\sqrt{x} + 4$
3. $3x - 5$
4. $3x - 10\sqrt{3x} + 25$
5. $1 - 4x$
6. $1 - 8\sqrt{x} + 16x$
7. $x^2 - 6x + 9$
8. $x - 2\sqrt{3x} + 3$
9. $x \ge -5$
10. $x \le 9$
11. $x \ge -\frac{3}{2}$
12. $x \ge \frac{4}{5}$
13. $x \ge 1$

Answer Key – Section 2.5

14. $x \ge \frac{1}{5}$
15. $t = 14$
16. No Solution
17. No Solution
18. $x = 2$
19. <i>x</i> = 23
20. No Solution
21. $x = 12$
22. $x = 5$
23. $x = 3$
24. No Solution
25. $h = 451m$
26. $h = 45.9m$

Pre-Calculus Math 11

Extra Work Space