Section 2.5 - Rates of Change and Conversions

Rate of Change

- Rates of change involve two variables: think $\mathrm{km} / \mathrm{hr}$
- The Rate of Change is the change of one variable with respect to the other
- The Rate of Change is the Slope
- The Greek letter Delta (Δ) is used to represent change.
- We use Rates of Changes to help compare quantities with different units.
- The formula for Rate of Change is: change in y over change in x.

$$
\begin{aligned}
& \text { Rate of Change } \\
& \frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
\end{aligned}
$$

Examples of Rates of Change:

1. Kilometers per hour: $\mathrm{km} / \mathrm{hr}$ or $\frac{\mathrm{km}}{\mathrm{h}}$
2. Miles per gallon: miles/gal or $\frac{m i}{g a l}$
3. Dollars per hour: $\$ / h r \quad$ or $\frac{\text { dollars }}{\text { hour }}$
4. If the city of Surrey grew by 120000 people over a five year period.

It has a rate of change of: $\frac{120000 \text { people }}{5 \text { years }}=24000 / y r$
5. If a person runs the 400 m race in 56 seconds, they run at a rate of:

$$
\frac{400 \mathrm{~m}}{56 \mathrm{sec}}=7.14 \mathrm{~meter} s / \text { second }
$$

- Rates of Change are just the slope relationship of two variables
- The variable on the y-axis is the dependent variable
- The variable on the x-axis is the independent variable (Usually: TIME)

Example:

Paul rents a car. The odometer read 86347 km . He used the car for 3 days and when he returned it the odometer read was 86721 km .
a) Determine the rate of gas consumption for the car.
b) Determine the average rate of travel per day.

Solution:

a) $\frac{\Delta y}{\Delta x}=\frac{(86721-86347) \mathrm{km}}{(63-0) \mathrm{litres}}=5.94 \mathrm{~km} /$ litre
b) $\frac{\Delta y}{\Delta x}=\frac{(86721-86347) \mathrm{km}}{(3-0) \text { days }}=124.7 \mathrm{~km} /$ day

- Rates of Change can be visualized using graphs. As mentioned the denominator quantity is generally placed of the \boldsymbol{x}-axis, the numerator value is placed on the \boldsymbol{y}-axis.

Example 1: Between 2000 and 2010, the cost of a 42" LCD TV dropped from $\$ 4600$ to $\$ 1200$. Graph this result and determine the average drop in price per year.

Solution 1: \quad Graph this information with time (yrs) as the independent axis (x - axis).

The TV PRICE DROPS by $\mathbf{\$ 3 4 0} / \boldsymbol{y r}$

Example 2: Most cars depreciate as they age. A car costing $\$ 30000$ will have a value of $\$ 2500$ at the end of 10 years. Determine the DEPRECIATION RATE.
a) Draw the graph of this information
b) Have time in years as the independant variable (x)
c) Have price in \$ as the dependant variable (y)
d) What is the rate of change of the car's value with respect to time?

Solution 2:

d) Value \$
a)

$$
\begin{aligned}
& \text { Rate of Change }=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& \begin{array}{c}
=\frac{30000-2500}{0-10}=\frac{\$ 27500}{-10 y r s}=\frac{\$ 2750}{-1 y r} \\
=\$-\mathbf{2 7 5 0} / \mathrm{yr}
\end{array}
\end{aligned}
$$

The CAR DEPRECIATES by $\$ 2750 / y r$

Example 3:

Georgia sells computers. She is paid a basic monthly salary of $\$ 1500$, plus $\$ 400$ for every five computers she sells.
a) Write a formula for Rate of Change of Georgia's \$/Computer Sold
b) Determine Georgia's wage in a month when she sells 60 computers

Solution 3:

a) Rate of Change $=\frac{\Delta y}{\Delta x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{400-0}{5-0}=\frac{\$ 400}{5 \operatorname{Comp}}=\frac{\$ 80}{1 \operatorname{Comp}}=\$ \mathbf{8 0} / \mathrm{comp}$

So she makes: $\$ 4800+\$ 1500=\$ 6300$ that month

Conversions and Measurement Systems

- When we are converting units, there will always be a known ratio that we use
- This known ratio will be between to different units

Example: $1 \mathrm{~cm}=10 \mathrm{~mm} \quad$ or $\quad 1 \mathrm{~cm}: 10 \mathrm{~mm} \quad \leftrightarrow \quad 10 \mathrm{~mm}: 1 \mathrm{~cm}$

- If we know these ratios we can convert anything we are given.
- Remember always MULTIPLY
- You just have to follow the following structure every time!

$$
\text { What you Have } * \text { Ratio }=\text { Answer }
$$

Metric System

- The Metric System is used by almost the entire world (all but three countries)
- It is easy for the purpose of conversion because it is a BASE 10 system

Example:

- The Base 10 system makes the conversion quite straight forward

Here is a list of the known Metric Conversion we will use:

Equation	Ratio	Fraction (Read Top per Bottom)
$1 \mathrm{~cm}=10 \mathrm{~mm}$	$1 \mathrm{~cm}: 10 \mathrm{~mm}$ $10 \mathrm{~mm}: 1 \mathrm{~cm}$	$\frac{1 \mathrm{~cm}}{10 \mathrm{~mm}} \leftrightarrow \frac{10 \mathrm{~mm}}{1 \mathrm{~cm}}$
$1 \mathrm{~m}=100 \mathrm{~cm}$	$1 \mathrm{~m}: 100 \mathrm{~cm}$ $100 \mathrm{~cm}: 1 \mathrm{~m}$	$\frac{1 \mathrm{~m}}{100 \mathrm{~cm}} \leftrightarrow \frac{100 \mathrm{~cm}}{1 \mathrm{~m}}$
$1 \mathrm{~km}=1000 \mathrm{~m}$	$1 \mathrm{~km}: 1000 \mathrm{~m}$ $1000 \mathrm{~m}: 1 \mathrm{~km}$	$\frac{1 \mathrm{~km}}{1000 \mathrm{~m}} \leftrightarrow \frac{1000 \mathrm{~m}}{1 \mathrm{~km}}$

Example 1:

How many centimeters are in 123 meters?

Solution 1:

$123 m * \frac{100 \mathrm{~cm}}{1 \mathrm{~m}}$ - I use the Ratio of $\mathrm{cm}: m$

- That way they cancel out
$123 \not 2 \mathrm{n} * \frac{100 \mathrm{~cm}}{1 \not \mathrm{~h}}=\frac{123 * 100 \mathrm{~cm}}{1}=\mathbf{1 2 3 0 0} \mathbf{0 0}$ Just left with Centimeters

Meters cancel with meters

Example 2:

How many km are there in 15242 centimeters?

Solution 2:

Step 1:
$15242 c m * \frac{1 \mathrm{~m}}{100 \mathrm{~cm}}=\frac{15242 \mathrm{~m}}{100}=152.42 \mathrm{~m}$

Step 2:

 want it to cancel out

We can do it all in one step, set up the ratios, continuous multiplication, so the units cancel!

Imperial System (Only 3 and a Half Countries use this)

- Liberia
- Myanmar (Burma)
- USA
- Canada/UK (use it sometimes)

The conversion ratios for the Imperial System are not Base 10, so they are not as easy to visualize Here they are:

Equation	Ratio	Fraction (Read Top per Bottom)
1 mile $=1760$ yards	$1 \mathrm{mi}: 1760 y d s$ $1760 y d s: 1 \mathrm{mi}$	$\frac{1 \mathrm{mi}}{1760 y d s} \leftrightarrow \frac{1760 y d s}{1 m i}$
1 mile $=5280 \mathrm{ft}$	$1 \mathrm{mi}: 5280 \mathrm{ft}$ $5280 \mathrm{ft}: 1 \mathrm{mi}$	$\frac{1 \mathrm{mi}}{5280 \mathrm{ft}} \leftrightarrow \frac{5280 \mathrm{ft}}{1 \mathrm{mi}}$
1 yards $=3$ feet	$1 y d: 3 f t$ $3 f t: 1 y d$	$\frac{1 y d}{3 f t} \leftrightarrow \frac{3 f t}{1 y d}$
1 foot $=12$ inches	$12 \mathrm{ft}: 12 \mathrm{in}: 1 \mathrm{ft}$	$\frac{1 \mathrm{ft}}{12 \mathrm{in}} \leftrightarrow \frac{12 \mathrm{in}}{1 \mathrm{ft}}$

- Everything still gets set-up the same way
- Make sure the ratios are set-up so that the units still cancel out top and bottom

Example 3:

How many feet are in 64 inches?

Solution 3:

Example 4:

How many inches are there in 3 miles?

Solution 4:

Multi Step Set-Up

$$
\begin{aligned}
& 3 m i * \frac{1760 y d s}{1 W K i}=5280 y d s \quad \text { Cancel miles } \\
& \text { 5280yeds } * \frac{3 f t}{1 y d s}=15840 \mathrm{ft} \quad \text { Cancel yds } \\
& 15840 f t * \frac{12 i n}{1 f t}=190080 i n \quad \text { Cancel feet }
\end{aligned}
$$

One Step Set-Up

$$
3 \text { m户le } * \frac{1760 y d}{1 n x i} * \frac{3 f t}{1 y d} * \frac{12 i n}{1 f t}=190080 i n
$$

Example 5:

How many feet in 4.5 miles?
Solution 5:

Multi-Step

$$
\begin{aligned}
& 4.5 n x i * \frac{1760 y d s}{1 m i}=7920 y d s \quad \text { Cancel miles } \\
& \text { 7920yds } * \frac{3 f t}{1 y d}=\mathbf{2 3 7 6 0 f t} \quad \text { Cancel yds }
\end{aligned}
$$

One Step

$$
4.5 \mathrm{mat} * \frac{1760 y d s}{1 m i} * \frac{3 f t}{1 y d}=\mathbf{2 3 7 6 0} \mathbf{f t}
$$

Metric to Imperial \leftrightarrow Imperial to Metric

- Again it is the exact same process
- In this case since we are dealing with approximate ratios it is good form to switch within each individual system and you make the ratio switch to the new system at the smallest units (You'll see an example)

Here are the conversions from system to system

Equation	Ratio	Fraction (Read Top per Bottom)
$1 \mathrm{mi} \cong 1.609 \mathrm{~km}$	$1 \mathrm{mi}: 1.609 \mathrm{~km}$ $1.609 \mathrm{~km}: 1 \mathrm{mi}$	$\frac{1 \mathrm{mi}}{1.609 \mathrm{~km}} \leftrightarrow \frac{1.609 \mathrm{~km}}{1 \mathrm{mi}}$
$1 \mathrm{ft} \cong 0.305 \mathrm{~m}$	$1 \mathrm{ft}: 0.305 \mathrm{~m}$ $0.305 \mathrm{~m}: 1 \mathrm{ft}$	$\frac{1 \mathrm{ft}}{0.305 \mathrm{~m}} \leftrightarrow \frac{0.305 \mathrm{~m}}{1 \mathrm{ft}}$
$1 \mathrm{in} \cong 2.54 \mathrm{~cm}$	$1 \mathrm{in}: 2.54 \mathrm{~cm}$ $2.54 \mathrm{~cm}: 1 \mathrm{in}$	$\frac{1 \mathrm{in}}{2.54 \mathrm{~cm}} \leftrightarrow \frac{2.54 \mathrm{~cm}}{1 \mathrm{in}}$

Example 6:

How many kilometers are in 730 ft?

Solution 6:

- Since there is NO DIRECT CONVERSION from $\mathbf{k m}$ to $\boldsymbol{f e e t}$, and the estimation from km to miles is a larger distance. Convert to meters first (Least amount of discrepancy)
- Switch from feet to meters
- Then we can switch from meters to km (a DIRECT CONVERSION)

Multi-Step

$$
730 f f t * \frac{\text { Cancel feet }}{1 f t}=222.65 \mathrm{~m}
$$

$$
222.65 \not 2 \mathrm{~h} * \frac{1 \mathrm{~km}}{1000 \not \mathrm{~h}}=\mathbf{0 . 2 2 \mathrm { km }}
$$

One Step

$$
730 \mathrm{fft} * \frac{0.305 \not 2 h}{1 \mathrm{ft}} * \frac{1 \mathrm{~km}}{1000 \not \mathrm{~h}}=\frac{730 * 0.305 \mathrm{~km}}{1000}=\frac{222.65 \mathrm{~km}}{1000}=\mathbf{0 . 2 2} \mathbf{k m}
$$

Example 7:

How many centimeters are there in $42 y d s$?

Solution 7:

Multi-Step

We have a small estimated direct conversion from centimeters to inches, go from yards to inches first

$$
42 y d s * \frac{3 f t}{1 y / d}=126 f t
$$

$$
126 f t * \frac{12 \text { in }}{1 f t}=1512 \mathrm{in}
$$

$$
1512 \not 2 \mathrm{~h} * \frac{2.54 \mathrm{~cm}}{1 \not 2 h}=3840.48 \mathrm{~cm}
$$

One-Step

We have a direct conversion from centimeters to inches, so let's go from yards to inches first

$$
42 y \not A s * \frac{3 f t}{1 y \not d} * \frac{12 i \not h}{1 f t} * \frac{2.54 \mathrm{~cm}}{1 i \nprec h}=\mathbf{3 8 4 0 . 4 8 c m}
$$

Example 8:

How many feet are there in 4 km

Solution 8:

Multi-Step

We have a direct conversion from meters to feet, so let's go from kilometers to meters first

One-Step

We have a direct conversion from meters to feet, so let's go from kilometers to meters first

$$
4000 \mathrm{~km} * \frac{1000 \mathrm{mh}}{1 \mathrm{~km}} * \frac{1 \mathrm{ft}}{0.305 \not p h}=\frac{4000}{0.305} \mathrm{ft}=\mathbf{1 3 1 1 4 . 7 5 \mathrm { ft }}
$$

All Conversions get set-up the same way. Make sure the Units Cancel and then just Multiply Across and Divide the Final Fraction.

Section 2.5 - Practice Problems

1. Which slopes show an increase (circle them), a decrease (underline them), or no change (cross out)
$\frac{6}{5}$
$-\frac{1}{5}$
$\frac{0}{7}$
$\frac{9}{13}$
$-\frac{5}{4}$
$\frac{0}{5}$
$-\frac{2}{9}$
$\frac{3}{3}$
2. Graphs A, B, and C show the amount of fuel used in a car's tank over time. Describe what the rate of change represents, what could it mean about the vehicle?

Represent:

Could Mean What about the Vehicle:

Time (hr)

Represent:

Could Mean What about the Vehicle:
3. Telus is taking advantage of me. They have me set-up on a plan where I pay per text message sent (See the grid). Graph the data (Think Dependant vs Independent variables), what is the rate of change of the line?

Texts	Cost $(\$)$
0	0
25	5
65	13

4. At what rate of change does the plane described in the graph descend at. Answer to the nearest tenth.

5. Mr. Phillips and his fiancé are wedding planning. They are looking to hire a DJ who charges $\$ 750$ for 3 hours or $\$ 1200$ for 6 hours. Graph the info provided and draw a line connecting the two points.
a) What is the slope of the line segment you have drawn? What does it represent?
b) Extend the line to the y-axis, what is the DJ's flat rate?
c) If they need the DJ for 5 hours, how much can they expect to pay?

6. Usain Bolt set a World Record for 100 m . He ran 100 m in 9.58 s .
a) How fast does he run in $\mathrm{m} / \mathrm{sec}$
b) How fat does he run, if he can keep up the pace, in $\mathrm{km} / \mathrm{hr}$
7. Della is filling a pool for her kids. The graph shows the volume of water in the pool as she fills it.
a) What is the rate of change of water in the pool (nearest hundredth)
b) What is this rate of change in $\mathrm{mL} / \mathrm{min}$

8. The new roller coaster at the PNE has a top speed of $84 \mathrm{miles} / \mathrm{hr}$ What is the speed in $\mathrm{km} / \mathrm{hr}$.
9. Gregor works for the city of Sidney. He drives a hot air lancer that blasts hot air at $3000 \mathrm{ft} / \mathrm{sec}$. How fast does the hot air move in meters/sec? (Round to the nearest tenth)
10. Mr. Philips was an up and coming baseball player, he could pitch at a top speed of $85 \mathrm{miles} / \mathrm{hr}$. How fast could he pitch in feet/sec. If the distance from the mound to the plate is 50 ft how long does the batter have to react and swing?

Section 2.5 - Answer Key

1. See Website Copy
2. i) $L / h r$; Not very fuel efficient ii) $L / h r$; No fuel consumed iii) $L / h r$; More fuel efficient than
3. $\$ 0.20 /$ Text
4. Decreases $10.7 \mathrm{ft} /$ second
5. a) $\$ 150 / \mathrm{hr}$ b) Flat Rate of $\$ 300$ c) $\$ 1050$
6. a) $10.4 \mathrm{~m} / \mathrm{sec}$ b) $37.4 \mathrm{~km} / \mathrm{hr}$
7. $45000 \mathrm{~mL} / \mathrm{min}$
8. $135.3 \mathrm{~km} / \mathrm{hr}$
9. $915 \mathrm{~m} / \mathrm{sec}$
10. Pitches $125 \mathrm{ft} / \mathrm{sec}$ Batter has 0.4 seconds to swing

