Section 2.5 – Inverse Functions

- We have inverse operators, like a zipper, they unzip what has been zipped
 - Subtraction is the inverse of addition
 - Division is the inverse of multiplication
 - Square Rooting is the inverse of Squaring
- Functions have inverses as well
 - Given two functions f(x) and g(x), they are inverses of one another if one 'undoes' what the other 'does'.

How to find the inverse of the Function y = f(x)

- 1. Verify that f is a one-to-one function (otherwise the inverse is not a function)
- 2. Replace f(x) with y
- 3. Interchange x and y. (Change x's to y's and y's to x's)
- 4. Solve the new equation for *y*
- 5. Replace the new *y* with $f^{-1}(x)$

Example 1: Determine f^{-1} for f(x) = 2x - 1 and then verify the solution

Solution 1:		Check Solution:	
f(x) = 2x - 1	Function is one-to-one	$f(f^{-1}(x)) = f\left(\frac{x+1}{2}\right)$	$f^{-1}(f(x)) = f^{-1}(2x - 1)$
y = 2x - 1	Replace $f(x)$ with y	(x + 1)	2 - 1 + 1
x = 2y - 1	Interchange x and y	$=2\left(\frac{n+1}{2}\right)-1$	$=\frac{22-1+1}{2}$
x + 1 = 2y	Solve for <i>y</i>	= x + 1 - 1	$=\frac{2x}{x}$
$\frac{x+1}{2} = y$		= <i>x</i>	2
$f^{-1}(x) = \frac{x+1}{2}$	Replace y with $f^{-1}(x)$		
		Therefore $f(x)$ and f^{-2}	$^{1}(x)$ are inverse functions.

Adrian Herlaar, School District 61

www.mrherlaar.weebly.com

Pre-Calculus 12

- There is a Domain/Range relationship between inverse functions as well
- The Domain of Function f(x) is the Range of $f^{-1}(x)$
- The Range of Function f(x) is the Domain of $f^{-1}(x)$

Example 3: Determine
$$h^{-1}$$
 of $h(x) = \frac{x}{2x-3}$

Solution 3:

$h(x) = \frac{x}{2x - 3}$	Function is one-to-one	Check Solution:
$y = \frac{x}{2x - 3}$	Replace $h(x)$ with y	$h(h^{-1}(x)) = h\left(\frac{3x}{2x-1}\right)$ $3x$
$x = \frac{y}{2y - 3}$	Interchange x and y	$=\frac{\overline{2x-1}}{2\left(\frac{3x}{2x-1}\right)-3}$
$x(2y-3) = y$ $2xy - 3x = y$ $2xy - y = 3x$ $y(2x - 1) = 3x$ $y = \frac{3x}{2x - 1}$	Solve for <i>y</i>	$= \frac{\frac{3x}{2x-1}}{\left(\frac{6x}{2x-1}\right)-3} \to \frac{\frac{3x}{2x-1}}{\left(\frac{6x}{2x-1}\right)-\frac{3(2x-1)}{(2x-1)}}$ $= \frac{\frac{3x}{2x-1}}{\left(\frac{6x-6x+3}{2x-1}\right)} = \frac{3x}{2x-1} \cdot \frac{2x-1}{x} = \frac{3x}{3} = x$
$h^{-1}(x) = \frac{3x}{2x - 1}$ $h^{-1}(x) = \frac{3x}{2x - 1}, x = \frac{3x}{2x - 1}$	Replace y with $h^{-1}(x)$ $\neq \frac{1}{2}$	$h^{-1}(h(x)) = h^{-1}\left(\frac{x}{2x-3}\right)$ $= \frac{3\left(\frac{x}{2x-3}\right)}{2\left(\frac{x}{2x-3}\right) - 1}$
		$=\frac{\left(\frac{3x}{2x-3}\right)}{\left(\frac{2x}{2x-3}\right)-1\frac{(2x-3)}{(2x-3)}}$
		$=\frac{\left(\frac{3x}{2x-3}\right)}{\frac{2x-2x+3}{2x-3}} = \frac{\left(\frac{3x}{2x-3}\right)}{\frac{3}{2x-3}} = \frac{3x}{2x-3} \cdot \frac{2x-3}{3}$ $= \frac{3x}{3} = x$
		Therefore $h(x)$ and $h(x)$ are inverse functions.

Pre-Calculus 12

Example 4: Determine the inverse of $h(x) = x^2 + 2$

Solution 4: Since h(x) is a parabola (quadratic, u-curved graph) then it is not one-to-one, so the inverse will not be a function but a Domain Restriction can change that, stay tuned.

_____ $h(x) = x^2 + 2$ Function is not one-to-one $y = x^2 + 2$ Replace h(x) with y $x = y^2 + 2$ Interchange *x* and *y* $x - 2 = y^2$ Solve for y $v = \pm \sqrt{x - 2}$ Not a Function Restrict Domain of h(x) to $x \ge 0$ Restrict Domain of h(x) to $x \leq 0$ Then $h^{-1}(x) = \sqrt{x+2}$ which is a Function | Then $h^{-1}(x) = -\sqrt{x+2}$ which is a Function **Check Solution:** $h(h^{-1}(x)) = h(\sqrt{x-2})$ $h(h^{-1}(x)) = h(-\sqrt{x-2})$ $= \left(\sqrt{x-2}\right)^2 + 2$ $= \left(-\sqrt{x-2}\right)^2 + 2$ = x - 2 + 2= x - 2 + 2= x= xfor $x \ge 0$ for $x \ge 0$ $h^{-1}(h(x)) = h^{-1}(x^2 + 2)$ $h^{-1}(h(x)) = h^{-1}(x^2 + 2)$ $=\sqrt{x^2+2-2}$ $= -\sqrt{x^2 + 2 - 2}$ $=-\sqrt{x^2}$ $=\sqrt{x^2}$ $= x since x \le 0$ $= x \text{ since } x \ge 0$ for $x \ge 0$, h(x) has in verse $\sqrt{x-2}$ Conclusion: for $x \le 0$, h(x) has in verse $-\sqrt{x-2}$

Graphs of Inverse Functions

- The graphs of f and f^{-1} are symmetric about the line y = x
- f(x) is the reflection of $f^{-1}(x)$ on the line y = x
- The interesting part is threat what happens with this reflection, the point (a, b) on f(x), becomes the point (b, a) on the graph of f⁻¹(x)

Example 5: Graph the inverse function of $g(x) = x^2, x \le 0$

Solution 5: To find the inverse, we have to work through the following way:

$$y = x^2, \qquad x \le 0, y \ge 0$$

$$x = y^{2}, \qquad y \le 0, x \ge 0$$

Swap, x's and y's in the
Domain and Range too
$$y = \pm \sqrt{x}, \qquad y \le 0, x \ge 0$$

y is negative, x is positive

So, $y = -\sqrt{x}$

$$q^{-1}(x) = -\sqrt{x}, x > 0$$

Example 6: f(x) = 2x - 3

- a) Determine $f^{-1}(x)$
- b) Show that $f(f^{-1}(x)) = f^{-1}(f(x)) = x$
- c) Graph f and f^{-1}

Solution 6:

a)

y = 2x - 3x = 2y - 3x + 3 = 2y $y = \frac{x + 3}{2}$

f(x) = 2x - 3

$$f^{-1}(x) = \frac{x+3}{2}$$

Transformation in Inverse Functions

- The transformation process is exactly the same as before
- The only difference is that the first step is to swap the *x*, *y values*

For a point (a, b) in y = f(x)

- $y = f^{-1}(x)$ will have a point (b, a)
- $y = f^{-1}(x 1)$ will have a point (b + 1, a)
- $y = f^{-1}(x) + 1$ will have a point (b, a + 1)
- $y = -2f^{-1}(3x)$ will have a point $(\frac{1}{3}b, -2a)$

Adrian Herlaar, School District 61

Section 2.5 – Practice Problems

1. The following are graphs of functions. Will they have inverse functions? Yes/No and Why?

2. Determine whether the functions are inverses of each other by calculating $(f \circ g)(x)$ and $(g \circ f)(x)$

a)
$$f(x) = \frac{3}{5}x, g(x) = \frac{5}{3}x$$

b) $f(x) = x - 3, g(x) = x + 3$
c) $f(x) = 3 - 4x, g(x) = \frac{3 - x}{4}$
d) $f(x) = x^3 - 2, g(x) = \sqrt[3]{x + 2}$

e)
$$f(x) = \sqrt{x-1}$$
, $g(x) = x^2 + 1$
f) $f(x) = \sqrt[3]{x}, x \ge 0$, $g(x) = x^4$
g) $f(x) = \frac{5x+3}{1-2x}$, $g(x) = \frac{x-3}{2x+5}$
h) $f(x) = \sqrt[3]{x+1}$, $g(x) = x^3 - 1$

3. Determine the restrictions on each of the following functions in order for its inverse to be a function

a)
$$f(x) = x^2$$

b) $f(x) = x^2 + 2$
c) $f(x) = (x - 2)^2$
d) $f(x) = |x + 1| - 2$

- 4. Find the inverse of the following functions. State if the inverse is a function, a one-to-one function, or neither.
- a) f(x) = 2x 3b) $f(x) = \sqrt{2x - 1}$

c)
$$f(x) = x^2 + 1$$

d) $f(x) = \frac{1}{3x - 2}$
e) $f(x) = \frac{x}{1 - x}$
f) $f(x) = \frac{2x - 1}{3x + 2}$

Pre-Calculus 12

5. Let
$$f(x) = 2x - 1$$
, $g(x) = \frac{1}{2}x + 3$, find $f^{-1}(x)$ and $g^{-1}(x)$, then determine

a)
$$(f^{-1} \cdot g)(x)$$

b) $(g^{-1} \cdot f^{-1})(x)$
c) $(g \cdot f^{-1})(x)$
d) $(f \cdot g^{-1})(x)$

e)
$$(f^{-1} \circ g^{-1})(x)$$

f) $(f \circ g)^{-1}(x)$

6. Given the graph of f, on the same grid draw the graph of the inverse of f.

Adrian Herlaar, School District 61

www.mrherlaar.weebly.com

- 7. If (-1, 2) or (a, b) is a point of the graph of y = f(x), what must be a point on the graph for the following?
- a) $y = f^{-1}(x)$ b) $y = f^{-1}(x) - 1$

c)
$$y = f^{-1}(x+2)$$

e) $y = 1 - f^{-1}(-x)$
f) $y = f^{-1}(x+1)$

8. Use Desmos to graph the following functions and their inverses. State if the inverse is a function, a one-to-one function, or neither.

a)
$$f(x) = 2x - 1$$

b) $f(x) = x^2 + 1$
c) $f(x) = x^3 - 1$
d) $f(x) = \sqrt{x^2 - 4}$

9. The function $f(x) = a(-x^3 - x + 2)$ has an inverse function such that $f^{-1}(6) = -2$. Find *a*.

10. If the graph of f contains points in Quadrant I and II, the graph of f^{-1} must contain points in which Quadrant(s)? (Use the grid provided to help visualize)

11. The formulas for Fahrenheit and Celsius temperatures are:

$$F = \frac{9}{5}C + 32$$
 and $C = \frac{5}{9}(F - 32)$

Show that these two functions are inverses of each other.

12. Show that for the one-to-one function f(x) = 2x + 1 and $g(x) = \frac{1}{4}x - 3$, that:

$$(f \circ g)^{-1}(x) = (g^{-1} \circ f^{-1})(x)$$

See Website Copy for Detailed Answer Key

Extra Work Space