Section 2.4 – Transformations of Graphs

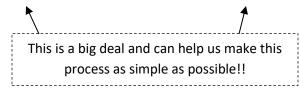
- Transformations is when we change the basic graph of a function in 2-dimensional space
- In this section, we will look at:
 - **Translations** vertical and horizontal shifts
 - **Compression and Expansion** stretch and squeeze
 - **Reflections** in both the *x* and *y* axes
- If we consider a basic function: y = f(x)

This can seem a little daunting, so we will look at it piecewise.

Transformations can give us shifts represented by:

y = af[b(x-c)] + d

- 1. Translations, or shifts, are additions or subtractions represented by c and d
- 2. Expansions, or compressions, are multiplications shown by a and b
- 3. Reflections happen when *a* or *b* are negative
- > Constants *a* and *d*, which are "outside of the function", affect the y values of the ordered pairs
- > Constants *b* and *c*, which are "inside the function", affect the x values of the ordered pairs



• Let's look at these various transformations separately.

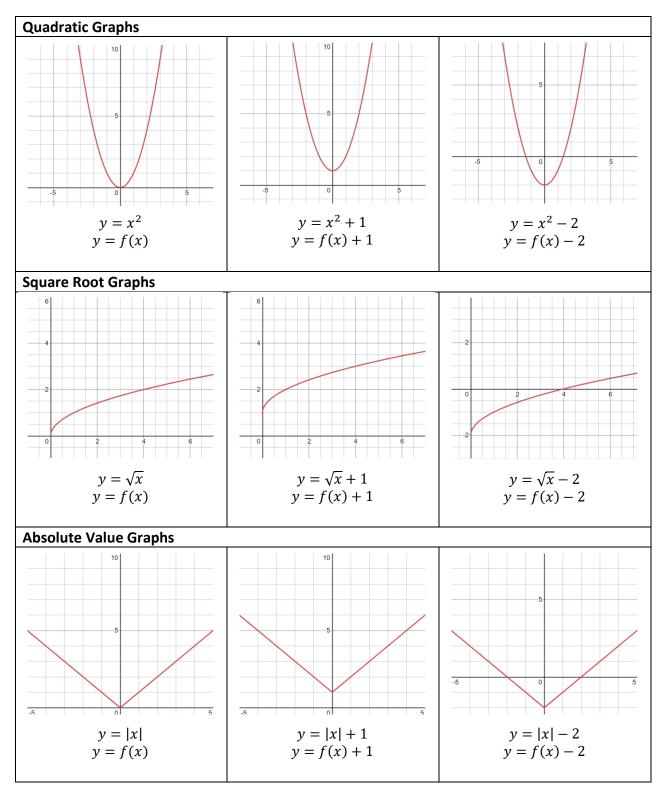
Translations

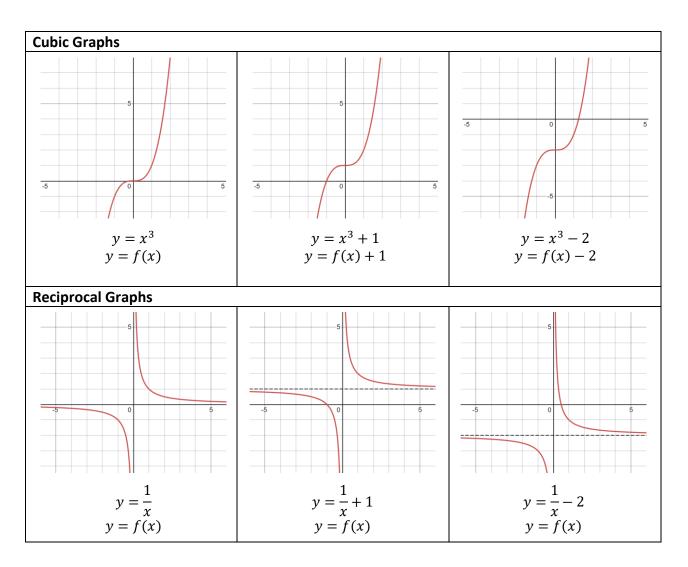
A translation is when the graph is shifted in the left or right (*x* direction) or the up and down (*y* direction), without changing the shape of the original graph

a)	Vertical Translations (y $direction$), $d > 0$	
	If $d > 0$, for the graph of $y = f(x)$, the graph of:	
	y = f(x) + d is shifted up " d " units	Vertical Translations are quite intuitive, they literally move up or down depending
	y = f(x) - d is shifted down " d " units	of the sign and number of the <i>d value</i>

See the following graphs as examples of vertical translations

Example 1:





b) Horizontal Translations ($x \ direction$), c > 0

If c > 0, for the graph of y = f(x), the graph of:

y = f(x + c) is shifted left "c" units

y = f(x - c) is shifted right "c" units

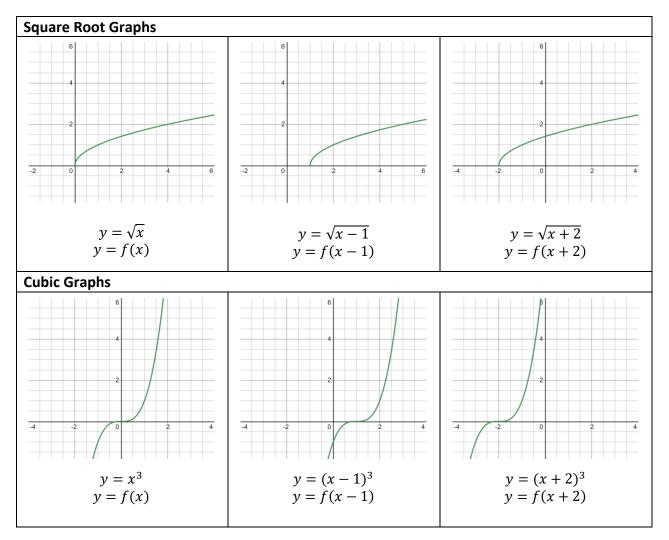
Horizontal Translations are not intuitive, they move the opposite direction of the sign of the c value

I like to think to consider "what value of x makes the inside zero". That value is where you move on the x - axis. y = f(x - 3) or y = f(x + 2)

> Moves right 3, or x = 3makes x - 3 = 0

Moves left 2, or x = -2makes x + 2 = 0

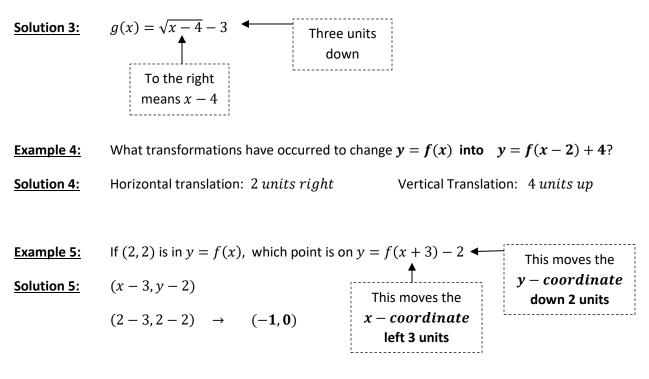
Example 2:



<u>Summary</u>

Vertical and Horizontal Translations of $y = f(x)$ with point (x, y)	
If $c, d > 0$:	
1. Vertical translation of d units $upward$	$h(x) = f(x) + d, \ (x, y + d)$
2. Vertical translation of <i>d</i> units <i>downward</i>	$h(x) = f(x) - d, \ (x, y - d)$
3. Horizontal translation of <i>c</i> units <i>to the right</i>	$h(x) = f(x - c), \ (x + c, y)$
4. Horizontal translation of <i>c</i> units <i>to the left</i>	h(x) = f(x + c), (x - c, y)

Example 3: Write the equation of the function $f(x) = \sqrt{x}$ after a transformation **4** *units right and* **3** *units down*



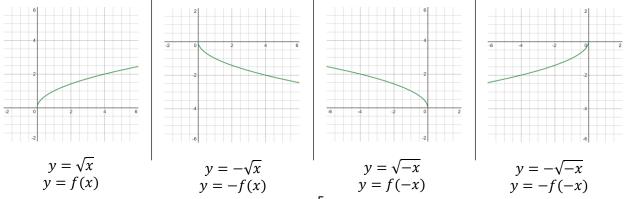
Reflections

The next type of transformation is a reflection. We are going to talk about reflecting over the x - axis and y - axis only.

- Consider reflecting over the x axis, all y values change their signs.
- Consider reflecting over the y axis, all x values change their signs.

For the graph of y = f(x), the graph of:

- \rightarrow y = -f(x) is a reflection of the y values, a reflection in the x axis
- > y = f(-x) is a reflection of the x values, a reflection in the y axis
- > y = -f(-x) is a **refection of the** x and y values, a reflection in the x and y axis



Adrian Herlaar, School District 61

Pre-Calculus 12

Summary

Reflections of $y = f(x)$ with point (x, y) in the two Axes	
1. Reflection in the $x - axis$	$h(x) = -f(x), \ (x, -\mathbf{y})$
2. Reflection in the $y - axis$	$h(x) = f(-x), \ (-x, y)$
3. Reflection in both <i>axes</i>	$h(x) = -f(-x), \ (-x, -y)$

Example 6: Write the equation of the function $f(x) = x^2 + x$ if it is reflected in the:

- a) x axis
- b) y axis

Solution 6:

- a) $f(x) \rightarrow -f(x)$ so $x^2 + x \rightarrow -(x^2 + x) = -x^2 x$
- b) $f(x) \to f(-x)$ so $x^2 + x \to (-x)^2 + (-x) = x^2 x$

Example 7: What transformations have occurred to change $y = x^2 + 2x$ into $y = -(x^2 + 2x)$?

Solution 7: Since the entire original function is inside the brackets, the negative on the outside. It is a reflection of the y - values (*the* x - axis).

Example 8: If (3, 2) is in y = f(x), which point is on:

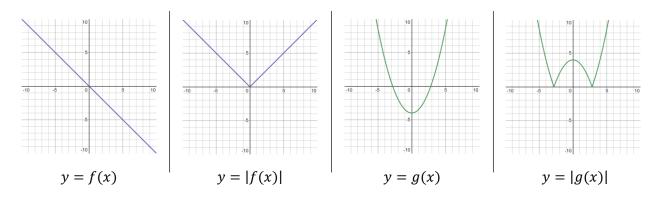
a) y = -f(x)b) y = f(-x)c) y = -f(-x)

Solution 8:

- a) Sign change in y values: (3, -2)
- b) Sign change in x values: (-3,2)
- c) Sign change in *x* and *y v*alues: (-3, -2)

Absolute Value Function

- The Domain (x values) of an absolute value function y = |f(x)| is the same as the original function f(x)
- But since absolute value cannot to negative
- The Range (y values) of an absolute value function y = |f(x)| only has positive values $y = f(x) \ge 0$



Reciprocal Function

• If *f*(*x*) then the **reciprocal function** has the form:

• This means all the y - values (*outputs*) become reciprocals

• I will not cover this is too much detail here (see the video on Reciprocal Functions), but see the example below.

 $\frac{1}{f(x)}$

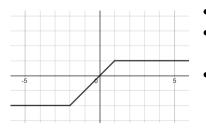
Example 9: If y = f(x) has the coordinate point (-2,4), what point is on $\frac{1}{f(x)}$

Solution 9: The Domain (x - values) do not change but the Range (y - values) become reciprocals of their original graphs

So
$$(-2, 4) \rightarrow (-2, \frac{1}{4})$$

Example 10: Given the graph of f(x) below, graph the reciprocal function

Solution 10:



- All outputs become reciprocals
- Where y = 0 we end up with vertical asymptotes
- Be considerate of the infinitely increasing and decreasing limits



Adrian Herlaar, School District 61

www.mrherlaar.weebly.com

Compression and Expansion of Graphs

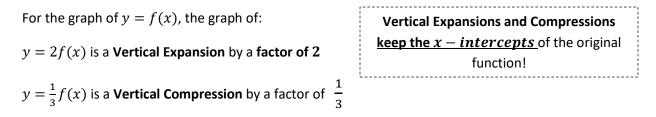
- Vertical and horizontal shifts leave the shape of the graph the same
- Compressions and Expansions graph a shape change, either a squeeze of a stretch
- There are helpful markers to determine whether or not it is a Vertical or Horizontal stretch

a) Vertical Compression and Expansion

For the graph of y = f(x), the graph of:

$y = a \cdot f(x)$ is a Vertical Expansion if a > 1 (Expansion by a factor of a)

 $y = a \cdot f(x)$ is a Vertical Compression if 0 < a < 1 (Compression by a factor of a, where a is a proper fraction)



Quadratic GraphsImage: state of the stape of the graph was altered*Image: state of the graph was altered*Image: state of the graph was altered*Image: state of the graph was altered*

Example 11:

Pre-Calculus 12

b) Horizontal Compressions and Expansion

For the graph of y = f(x), the graph of:

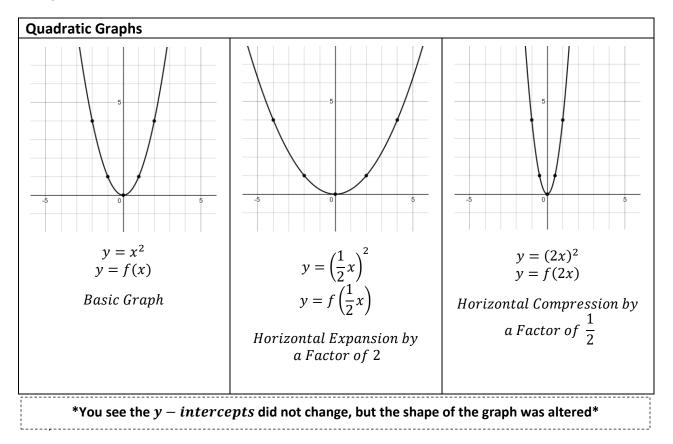
$$y = f(bx) \text{ is a Horizontal Compression if } b > 1 \text{ (by a factor of } \frac{1}{b}\text{)}$$

$$y = f(bx) \text{ is a Horizontal Expansion if } 0 < b < 1 \text{ (by a factor of } \frac{1}{b} \text{ where } b \text{ is a proper fraction)}$$
Horizontal Expansions and Compressions where the set of the original function is a Horizontal Compression by a factor of $\frac{1}{2}$

$$y = f(2x) \text{ is a Horizontal Expansion by a factor of } \frac{1}{2}$$

$$y = f(\frac{1}{3}x) \text{ is a Horizontal Expansion by a factor of } 3$$

Example 11:



Summary

Vertical and Horizontal Compressions and Expansions of	
y = f(x) with point (x, y)	
If <i>a</i> > 1, <i>b</i> > 1:	
1. Vertical expansion by a factor of <i>a</i>	$h(x) = af(x), \ (x, ay)$
2. Horizontal compressions by a factor of $\frac{1}{b}$	$h(x) = f(bx), \ (\frac{1}{b}x, y)$
If $0 < a < 1, 0 < b < 1$:	
3. Vertical expansion by a factor of a (a is a proper fraction)	$h(x) = af(x), \ (x, ay)$
4. Horizontal compressions by a factor of $\frac{1}{b}$	$h(x) = f(bx), \ (bx, y)$
(b is the reciprocal of a proper fraction)	

Example 12: Write an equation for the function $y = \sqrt{x}$, with a

- a) Vertical Expansion by a factor of 2
- b) Vertical Compression by a factor of $\frac{1}{2}$
- c) Horizontal Expansion by a factor of 2
- d) Horizontal Compression by a factor of $\frac{1}{2}$

Solution 12:

a)
$$y = 2\sqrt{x}$$
 b) $y = \frac{1}{2}\sqrt{x}$ c) $y = \sqrt{\frac{1}{2}x}$ d) $y = \sqrt{2x}$

Example 13: What transformation has happened to y = f(x) to produce $y = 3f(\frac{1}{4}x)$?

Solution 13:

- ✓ Vertical expansion by a factor of 3
- $\checkmark \quad \text{Horizontal expansion by a factor of } \frac{1}{\frac{1}{4}} \rightarrow 4$

Example 14: If (3, 1) is on y = f(x), what point is on y = 2f(4x)?

Solution 14:

$$(x,y) \rightarrow \left(\frac{1}{4}x,2y\right) \rightarrow \left(\frac{1}{4}(3),2(1)\right) \rightarrow \left(\frac{3}{4},2\right)$$

Adrian Herlaar, School District 61

www.mrherlaar.weebly.com

Section 2.4 – Practice Problems

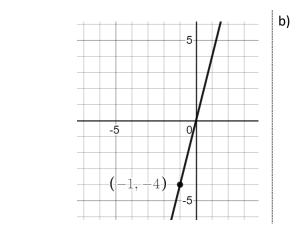
1. Write an equation for the function that is described by the given characteristics.

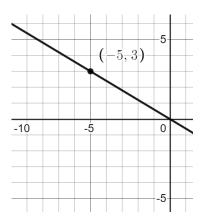
a) The shape $f(x) = x^2$, moved 4 <i>units</i> to the left and 5 <i>units</i> downward.	b) The shape $f(x) = x^2$, moved 2 <i>units</i> to the right, reflected in the $x - axis$, and moved 3 <i>units</i> upward.
c) The shape $f(x) = x^3$, moved 2 units to the right and 3 units downward.	d) The shape $f(x) = x^3$, moved 1 unit downward and reflected in the $y - axis$.
 e) The shape f(x) = x , moved 6 units upward and 3 units to the left. 	f) The shape $f(x) = x $, moved 3 <i>units</i> to the left and reflected in the $x - axis$
g) The shape $f(x) = \sqrt{x}$, moved 7 <i>units</i> to the right and reflected in the $x - axis$	h) The shape $f(x) = \sqrt{x}$, moved 4 <i>units</i> upward and reflected in the y - axis

2. If (-3, 1) or (a, b) is a point on the graph of y = f(x), what must be a point on the graph of the following?

a) $y = f(x + 2)$	b) $y = f(x) + 2$
c) $y = f(x - 2) - 2$	d) $y = -f(x)$
e) $y = f(-x)$	f) $y = -f(-x)$
g) $y = f(-x) - 2$	h) $y = -f(x+2)$

3. Use the graph of f(x) = x to write an equation for each function whose graph is shown. Each transformation includes only reflections or expansions/compressions.



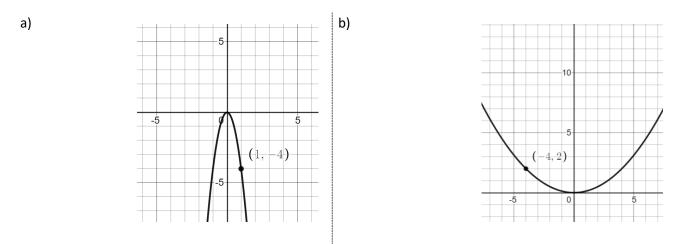


12

a)

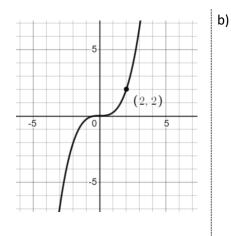
www.mrherlaar.weebly.com

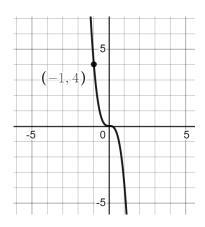
4. Use the graph of $f(x) = x^2$ to write an equation for each function whose graph is shown. Each transformation includes only reflections or expansions/compressions.



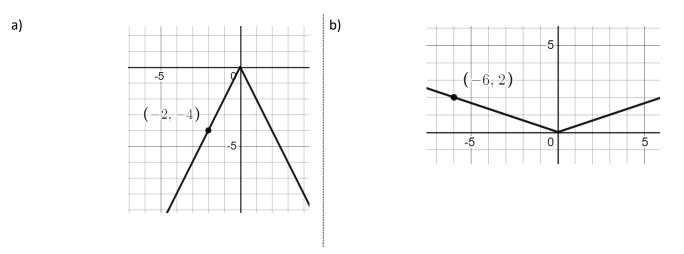
5. Use the graph of $f(x) = x^3$ to write an equation for each function whose graph is shown. Each transformation includes only reflections or expansions/compressions.

a)



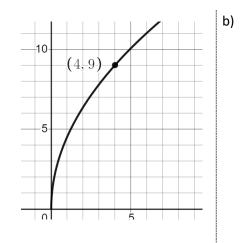


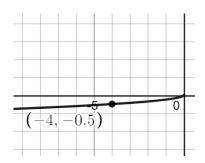
6. Use the graph of f(x) = |x| to write an equation for each function whose graph is shown. Each transformation includes only reflections or expansions/compressions.



7. Use the graph of $f(x) = \sqrt{x}$ to write an equation for each function whose graph is shown. Each transformation includes only reflections or expansions/compressions.

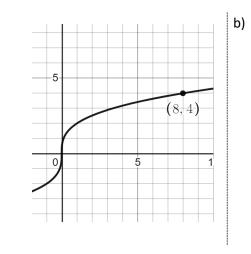
a)

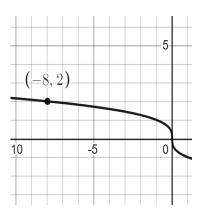




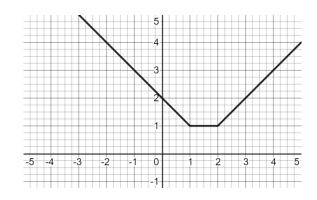
a)

8. Use the graph of $f(x) = x^{\frac{1}{3}}$ to write an equation for each function whose graph is shown. Each transformation includes only reflections or expansions/compressions.



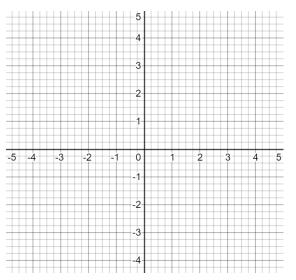


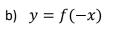
9. Given the graph of f(x) below, sketch the graphs of the following:

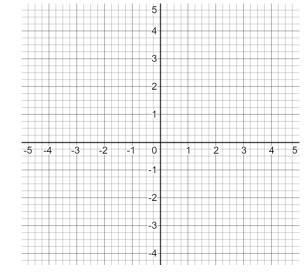


15

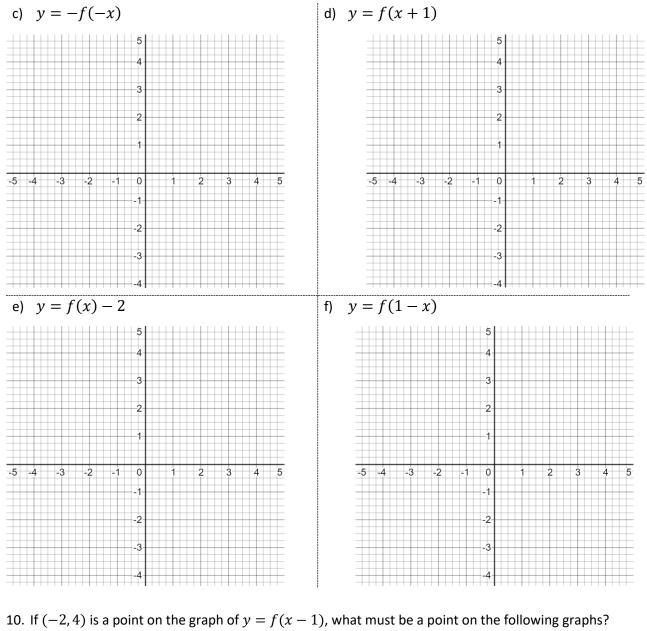
a)
$$y = -f(x)$$

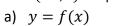


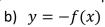




Adrian Herlaar, School District 61







c)
$$y = f(-x)$$

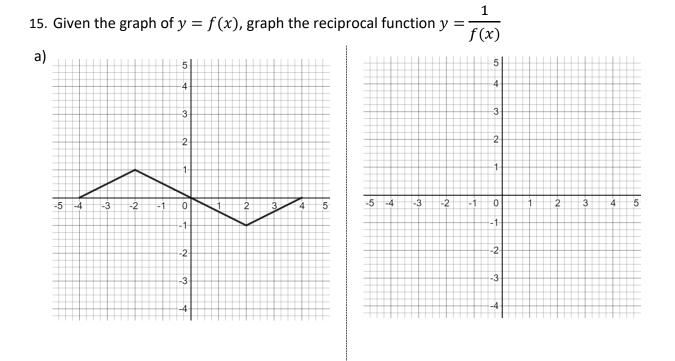
e) $y = f(x+2)$
f) $y = -f(-x)$

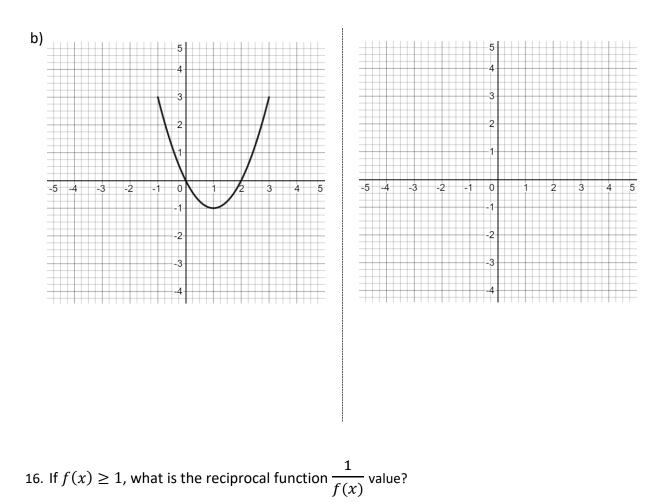
11. What is the range of the Absolute Value Function: $f(x) = |4 - x^2|$

12. If the point (-1, -2) is on the graph y = f(x), what point is on the graph y = |f(-x)|?

13. If the range of y = f(x) is $-3 \le y \le 1$, what is the range of y = |f(x)|?

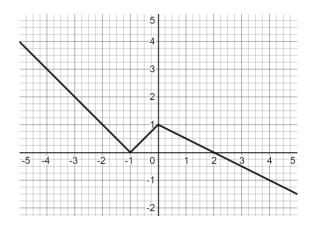
14. If the point (-3, -6) is on the graph y = f(x), what point is on the graph y = 3|f(x)| + 1?



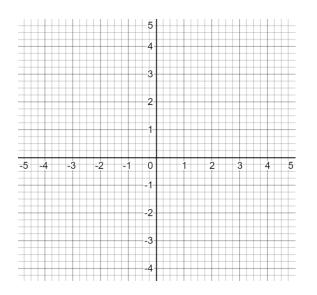


17. If the graph of y = f(x) has the restriction of $0 < f(x) \le 1$, what are the restrictions of $y = \frac{1}{f(x)}$?

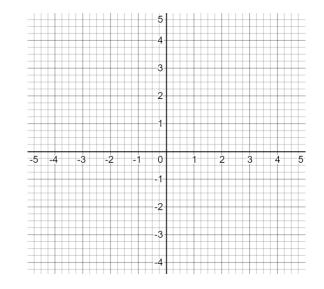
18. Given the graph of f(x) below, sketch the graphs of the following:

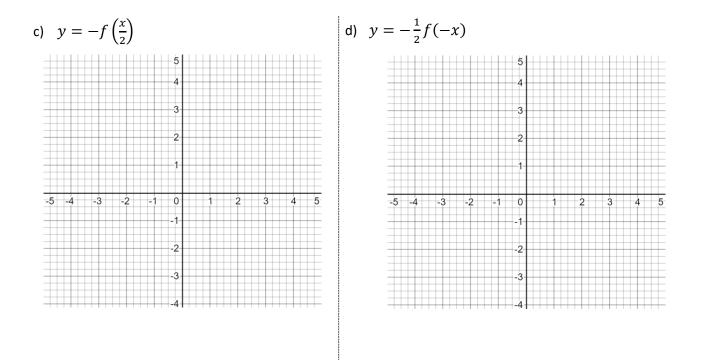


a)
$$y = 2f(x)$$

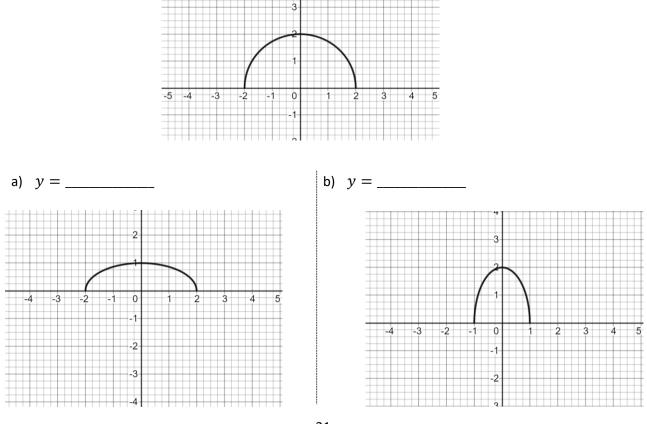


b)
$$y = f(2x)$$



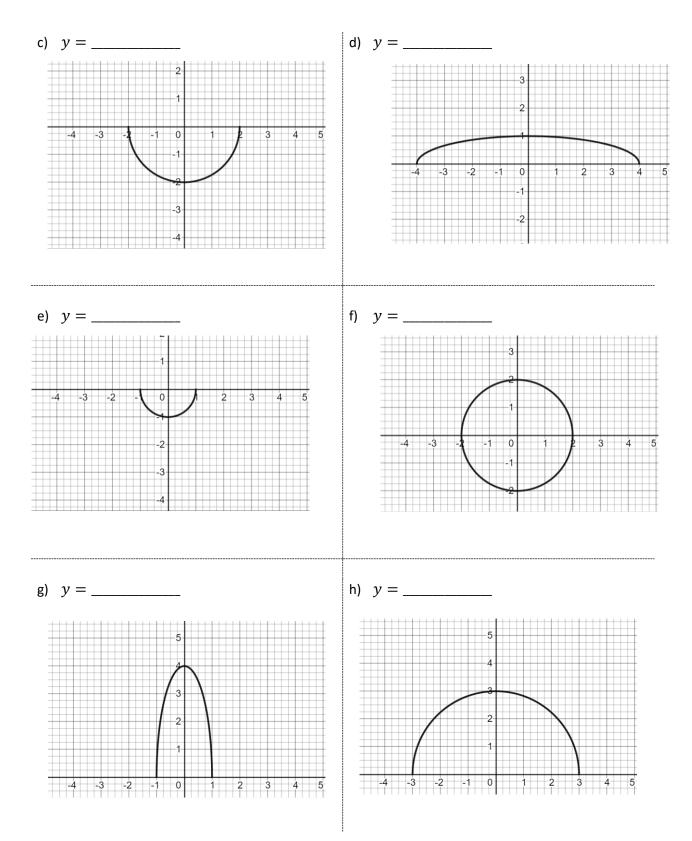


19. Given the graph of f(x) below, what equations represent the following graphs



Adrian Herlaar, School District 61

www.mrherlaar.weebly.com



See Website for Detailed Answer Key

Adrian Herlaar, School District 61

Extra Work Space