Section 2.4 - Practice Problems

1. Use the slope formula to determine the slope of the following lines.
a)

Work Space

$$
\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-4-4}{-2-(2)}=\frac{-8}{0}
$$

$$
x_{2}-x_{1}
$$

$$
x_{2}-x . \quad \text { Undefined }
$$

c)

b)

Work Space

$$
\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-8-5}{3-3}=\frac{-13}{0}
$$

undefined
d)

Work Space

$$
\frac{y_{2}-y_{1}}{x_{2}-v_{1}}=\frac{-7-(-7)}{9-(-2)}=\frac{0}{11}
$$

It doesn't matter which pout is 1 or 2 just be
2. Is the line joining the following two points vertical, horizontal, or neither. Prove your consistent
$y_{2}-y_{1}$ $x_{2}-x_{1}$ statement using the Slope Formula.
a) $(34.5,2.6)$ and $(45.0,2.6)$
b) $(68,10)$ and $(52,12)$

$$
\begin{gathered}
\frac{2.6-2.6}{45-34.5}=\frac{0}{10.5}=0 \\
\text { Horizontal }
\end{gathered}
$$

$$
\frac{12-10}{52-68}=\frac{2}{4}=\frac{1}{2}
$$

Neither
c) $(40,100)$ and $(40,200)$
d) $(31,5)$ and $(62,12)$

$$
\frac{200-100}{40-40}=\frac{100}{0} \text { undefined }
$$

$$
\frac{12-5}{62-31}=\frac{7}{31} \text { Neither }
$$

Vertical
e) $(4,2)$ and $(2,4)$

$$
\frac{4-2}{2-4}=\frac{2}{-2}=-1
$$

Neither
f) $(0,5)$ and $(0,-2)$

$$
\frac{-2-5}{0-0}=\frac{-7}{0} \text { undefined }
$$

3. Order the slopes in the previous question from flattest to steepest.

$$
a, d, b, e, c+f
$$

Harizela

vertical
4. Jake knows that the average slope of his Green Chair ski run is: $\frac{9}{20}$. The coordinates of the top and bottom of the ski run are: $(2 m, 0 m)$ and $(1250 m, y)$. What is the missing coordinate? pl. pl. 2

$$
\text { Slope }=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{y-0}{1250-2}=\frac{y}{1248}
$$

but slope $=\frac{9}{20} \quad$ so $^{1248} \cdot \frac{9}{20}=\frac{7}{1248} \cdot 1248$
5. A line connecting the points $(x, 5)$ and $(4,8)$ has a slope of 0.3 . What is the missing coordinate? And once you have found it, graph the points and the line on the grid provided. Check your line to endure you are correct.

So...
$3 / 10=\frac{8-5}{4-x}$
Since $3=3$
$\frac{3}{10}=\frac{3}{4-x}$

6. Phil is a mountain biker, he has built a ramp in his backyard. He wants the slope of his ramp to be: $\frac{4}{11}$. He needs the height of the ramp to be $8 m$. How long should the base of the ramp be? Use the Pythagorean Theorem $a^{2}+b^{2}=c^{2}$ to find the length of the
ramp itself.
$2 \cdot \frac{4}{2 \cdot 11}=\frac{8}{x}$
$\frac{8}{22}=\frac{8}{22}$

the sane
the bultams
ore

$$
x=22
$$

7. Ashley works for a Powerline company. The contractor needs a power-line set-up from the bottom of a hill to the top. What is the slope of the Powerline connection.

$$
\frac{2442-2423}{162-5}=\frac{19}{157}
$$

(Sm, 2423m)

